Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5338
標題: 以固相微萃取評估受萘污染土壤生物可及性並預測生物復育之成效
Bioavailability Assessment of Naphthalene by Solid Phase Microextraction to Predict Bioremediation Efficacy
作者: 曲可喬
Chu, Ko-Chiao
關鍵字: naphthalene;萘固相微萃取;Solid Phase Micro Extraction (SPME);rapid desorption;bioavailability;bioremediation;快速脫附;生物可及性;生物復育
出版社: 環境工程學系所
引用: 行政院勞工委員會及工業技術研究院(2001)物質安全資料表CAS.No. 00091-20-3 行政院環保署(2003)土壤及地下水污染整治法 行政院環保署(2005)環境檢驗方法偵測極限測定指引 NIEA-PA107 李茂山(1998)“受2,4-二氯酚、三氯乙烯污染土壤之生物復育”碩士論文,國立中興大學環境工程學研究所,台中。 吳鎧光(2002)“以固相微萃取技術發展空氣中環氧乙烷”碩士論文,中國醫藥學院環境醫學研究所,台中。 林坤璋(2005)“利用頂空固相微取法探討水中三鹵甲烷生成速率的可行性”碩士論文,國立中興大學環境工程學研究所,台中。 邱明良(2000)“受多環芳香族碳氫化合物–萘、菲污染土壤之生物復育研究”碩士論文,國立中興大學環境工程學研究所,台中。 郭魁士(1980)“土壤實習”,中國書局。 張高榕 (2006) “以固相微萃取評估苯污染土壤生物可及性並預測生物復育成效”碩士論文,弘光科技大學環境工程研究所,台中。 陳致谷,張添晉(1993)“土壤污染復育工程技術”工業污染防治,第四十五期,43-62。 陳致谷,張添晉(1995)“土壤污染生物復育之應用及展望”工業污染防治,第53 期,113-138。 陳慎德,王凱中,何秉宜,何忠賢(1999)“對台灣地區土壤地下水整治工作之看法”環境工程會刊,第十卷第三期,32-67。 黃富昌(2004)“土壤結構及化性對有機污染物吸/脫附特性之研究”博士論文,國立中央大學環境工程研究所,桃園。 黃敬德、謝有容(1998)“固相微萃取技術之原理及其應用” 化學,第五十六卷,第四期,313-318。 葉曜嘉(1996)“固相微萃取法於微量酚之萃取偵測”碩士論文,國立中興大學化學研究所,台中。 廖佩伶(2000)“土壤中有機氯農藥殘留分析之萃取方法比較” 碩士論文,清華大學原子科學研究所,新竹。 鄭志琦(2003)“頂空固相微萃取法配合氣相層析儀分析土中多氯聯苯之研究” 碩士論文,國立中興大學環境工程研究所,台中。 盧至人(1994) “處置土壤污染區之策略運用”污染土地之整治與永續利用研討會論文集,7-1~7-5。 盧至人(1997)“地下水的污染整治”國立編譯館,台北。 謝文賓(1993) “多環芳香族化合物(PAHs)在土壤中之生物降解作用”碩士論文,臺灣大學環境工程研究所,台北。 蘇世昌(1999)“受多環芳香族化合物–萘污染環境之生物復育可行性研究”碩士論文,國立中興大學環境工程學研究所,台中。 Alexander, M. (1995) “How toxic are toxic chemicals in soil?” Environ. Sci. Technol., 29 : 2713-2717 Alexander, M. (1999) Biodegradation and Bioremediation 2nd ed., Academic Press, San Diego, CA., U.S.A. Alexander, M. (2000) “Aging, bioavailability, and overestimation of risk from environmental pollutants” Environ. Sci. Technol. 34 : 4259-4265 Aronstein, B. N., T. Y. Calvillo, and M. Alexander (1991) “Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil” Environ. Sci. Technol., 25 : 1728-1731 Arthur, C. L. and J. Pawliszyn (1990) “Solid phase microextraction with thermal desorption using fused silica optical fiber” Anal. Chem., 62 : 2145-2148 Autry, R. A. and G. M. Ellis. (1992) “Bioremediation : a effective remedial alternative for petroleum hydrocarbon-contaminated soil” Enviorn. Progress., 11 : 218-323 Barriuso, E., W. C. Koskinen, and M. J. Sadowsky (2004) “Solvent extraction characterization of bioavailability of Atrazine residues in soil” J. Agric. Food Chem., 52 : 6552-6556 Bastiaens, L. (1998) “Isolation and characterization of polycyclic aromatic hydrocarbon- degrading bacteria, evaluation of the use of the isolates in soil slurry bioremediation” Leuven : Katholieke Universiteit Leuven. Bonten, L. T. C., C. Cuypers, T. Grotenhuis, and W. H. Rulkens (2001) “Limitations for PAH bioremediation in soil and sediment : desorption versus biodegradation” J. Bioremed. In : Bonten, L. T. C. (2001) “Improving bioremediation of PAH contaminated soil by thermal pretreatment” PhD-thesis, Wageningen University, Wageningen : The Netherlands, 141 pages. Carroll, K. M., M. R. Harkness, A. A. Bracco, and R. R. Balcarcel (1994) “Application of a permeat.polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson river sediments” Environ. Sci. Technol. 28 : 253-258 Carmichael, L. M., R. F. Christman, and F. K. Pfaender (1997) “Desorption and mineralization kinetics of phenanthrene and chrysene in contaminated soils” Environ. Sci. Technol. 31 : 126–132 Cerniglia, C. E. and M. A. Heitkamp (1989) “Microbial degradation of PAH in the aquatic environment” Metabolism of polycyclic aromatic hydrocarbons in the environment, Varanasi U. (eds.), Boca Raton, Fla., CRC Press, Inc., U.S.A. Chiou, C. T. and T. D. Shoup (1985) “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity” Environ. Sci. Technol., 19 : 1196-1200 Cho, D. H., S. H. Kong, and S. G. Oh (2003) “Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography”, Wat. Res., 37 : 402-408 Chung, N. and M. Alexander (1998) “Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils.” Environ. Sci. Technol., 32 : 855-860 Coble, R. L. (1968) “Development of microstructures in ceramic systems” 8-80 in Ceramic Microstructures, Fulrath R. M.and Pask. J. A. (Ed.) Wiley, New York, U.S.A. Cornelissen, G., P. C. M. V. Noort, and H. A. Grovers (1997) “Desorption kinetics of chlorobenezenes, polycyclic aromatic hydrocarbons, and polychlorinated biophenyls: sediment extraction with tenax and effects of contact time and solute hydrophobicity” Environ. toxicol. chem., 16 : 1351-1357 Cornelissen, G., H. Rigterink, M. M. A. Ferdinandy, and P. C. M. V. Noort (1998) “Rapidly desorbing fraction of PAH in contaminated sediments as a predictor of the extent of bioremediation” Environ. Sci. Technol. 32 : 966-970 Cornelissen, G., P. C. M. V. Noort, and H. A. J. Grovers (1998) “Mechanisms of slow desorption of organic compounds from sediments: a study using model sorbents” Environ. Sci. Technol. 32 : 3124-3131 Cuypers, C. (2001) “Bioavailability of polycyclic aromatic hydrocarbons in soils and sediments” PhD Thesis, Wageningen University, Wageningen, Then Netherlands Cuypers, C., T. Grotenhuis., J. Jan, and W. Rulkens (2000) “Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments” Environ. Sci. Technol., 34 : 2057-2063 Dibble, J. T. and R. Bartha (1979) “Effect of iron on biodegration of petroleum in seawater” App. Enviorn. Micobiol., 31 : 544-550 Doong, R. A., S. M. Chang, and Y. C. Sun (2000) “Soild-phase microextraction for determining the distribution of sixteen US Environmental Protection Agency polycyclic aromatic hydrocarbons in water samples” J. Chromatorgr. A, 879 : 177-188 Ehlers, L. J. and R. G. Luthy (2003) “Contaminant bioavailability in soil and sediment” Environ. Sci. Technol., 37 : 295-302 Eisert, R. and K. Levsen (1996) “Solid-phase microextraction coupled to gas chromatography : a new method for the analysis of organics in water” J. Chromatogr. A : 733, 143-157 Erickson, D. C., R. C. Loehr, and E. F. Neuhauser (1993) “PAH loss during bioremediation of manufactured gas plant site soils” Water Res., 27 : 911-919 Fu, M. H., H. Mayton, and M. Alexander (1994) “Desorption and biodegradation of sorbed styrene in soil and aquifer solids” Environ. Toxicol. Chem., 13 : 794-753 Gianfreda, L. and J. M. Bollag (1999) “Effect of soils on the behavior of immobilized enzymes” Soil Sci. Soc. Am. J., 58 : 672-1681 Gordon, A. S. and F. J. Millero (1985) “Adsorption-mediated decrease in the biodegradation rate of organic compounds” Microbiol. Ecology., 11 : 289-298 Guerin, W. F. and S. A. Boyd (1990) “Influence of sorption on biodegradation of naphthalene by soil bacteria” 82nd Annual Meeting, Soil Science Society of America. Harm, H. and A. J. B. Zehnder (1995) “Bioavailability of sorbed 3-chlorodibenzofuran” Appl. Environ. Microbiol. 61 : 27-33 Hatzinger, P.B. and M. Alexander (1995) “Effect of aging on chemicals in soil on their biodegradability and extractability” Environ. Sci. Technol., 29 : 537-545 Hendriks, J. (2003) “Possible application of Solid Phase Micro Extraction for determination of pesticide availability in sediment” PhD Thesis,Wageningen University, Wageningen, The Netherlands Henry, X. C. and J. J. A. Pedro (1996) “Natural bioremediation perspective for BETX-contaminated groundwater in Brazil : effect of ethanol” Enciron. Sci. Technol., 34 : 311-318 Holman, H. Y. K., N. Nieman, D. L. Sorensen, C. D. Miller, M. C. Martin, T. Borch, R. McKinney, and R. C. Sims (2002) “Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies” Environ. Sci. Technol., 36 : 1276-1280 Hwu, C. S. and T. Grotenhuis (2003) “Assessing bioavailability of petroleum hydrocarbons in contaminated soils and sediments” 第一屆土壤與地下水研討會論文集光碟 第十五屆環工年會. Junge, C. E. (1977) “Fate of pollutants in the air and water environments” Environ. Sci. Technol. : 7-26 Kelsey, J. W. and M. Alexander (1997) “Declining bioavailability and inappropriate estimation of risk of persistent compounds” Environ. Toxicol. Chem. 16 : 582–585. Lambert, S. M. (1976) “Functional relationship between sorption in soil and chemical Structure,” J. Agric. Food Chem., 15 : 572-576 Leahy, J. G. and R. R. Colwel (1990) “Microbial degradation hydrocarbons in the envioronment” 54 : 305-315 Lei, L., M. T. Suudan, A. P. Khodadoust, and H. H. Tabak (2004) “Assessing the bioavailability of PAHs in Field-contaminated sediment using XAD-2 assisted desorption” Environ. Sci. Technol., 38 : 1786-1793 Linz, D. G. and D. V. Nakles (ed.) (1997) “Environmentally acceptable endpoints in soil” Am. Academy of Environ. Eng., New York. Liste, H. H. and M. Alexander (2002) “Butanol extraction to predict bioavailability of PAHs in soil” Chemosphere, 46 : 1011-1017 Liu, Z., A. M. Jacobson, and R. G. Luthy (1995) “Biodegradation of naphthalene in aqueous nonionic surfactant systems” Appl. Environ. Microbiol., 67 : 1428-1430 Luthy, R. G., G. R. Aiken, M. L. Brusseau, S. D. Cunningham, P. M. Gshwend, J. J. Pignatello, M. Reinhard, S. J. Traina, Jr. W. J. Weber, and J. C. Westall (1997) “Sequestration of hydrophobic organic contaminations by geosorbents” Environ. Sci. Technol., 31 : 3341-3347 Mahro, B., G. Schaefer, and M. Kästner (1997) “Pathways of microbial degradation of polycyclic aromatic hydrocarbons in soil” In Hinchee/Leeson and Semprini/Ong (Eds), Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbons Compounds:203-215 Malekani, K., J. A. Rice, and J. S. Lin (1997) “The effect of sequential removal of organic matter on the surface morphology of humin” Soil Sci., 162 : 333-342 Manilal, Y. B. and M. Alexander (1991) “Factors affecting the microbial degradation of phenanthrene in soil” Appl. Microbiol. Biotechnol. 35 : 401-405 McCarty, P. L. (1988) “Bioengineering issues related to in situ remediation of contaminated soils and groundwater” in G. S. Omenn(ed), Environ. Biotechnol. lenum, New York. : 143-163 McNally, D. L., J. R. Mihelcic, and D. R. Lueking, (1999) “Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions” Chemosphere, 38 : 1313-1321 Mihelcic, J. R., D. R. Lueking, R. Mitzel, and J. M. Stapleton (1993) “Bioavailability of sorbed and separate phase organic chemicals” Biodegrad., 4 : 141-153 Miller, M. E. and M. Alexander (1991) “Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension” Environ. Sci. Technol. 25 : 240-245 Mott, S. C., P. H. Groenevelt, and R. P. Voroney (1990) “Biodegradation of a gas oil applied to aggregates of different sizes” J. Environ. Qual., 19 : 257-260 Nam, K. and M. Alexander (1998) “Role of nanoporosity and hydrophobicity in sequestration and bioavailability : Test with model soilds” Environ. Sci. Technol. 32 : 71-74 Nash, R. G. and E. A. Woolson (1967) “Persistence of chlorinated hydrocarbon insecticides in soils” Sci., 157 : 924-927 Nikiema, J., L. Bibeau, J. Lavoieb, R. Brzezinski, J. Vigneux, and M. Heitz (2005) “Biofiltration of methane: An experimental study” J. Chem. Eng., 113 : 111–117 Nilsson, T., R. Ferrari, and S. Facchetti, (1997) “Inter-laboratory studies for the validation of solid-phase microextraction for the quantitative analysis of volatile organic compounds in aqueous sample ” Anal. Chim. Acta, 356 : 113-123 Ogram, A. V., R. E. Jessup, L. T. Ou, and P. S. C. Rao (1985) “Effects of sorption on biological degradation rates of 2,4-Dichlorophenoxy acetic acid soils.” Appl. Environ. Microbiol., 49 : 582-587 Park, K. S., R. C. Sims, and R. R. Dupont (1990) “Transformation of PAHs in soil systems” J. Enviorn. Eng., 16 : 632~640 Pavlostathis, S. G. and G. N. Mathavan (1992) “Desorption kinetics of selected volatile organic compounds from field contaminated soils” Enuiron. Sci. Technol., 26 : 532-538 Pawliszyn, J. (1997) “Solid phase microextraction:theory and practice”, Wiley-VCH, Inc., Canada. Pignatello, J. J. (1998) “Soil organic matter as a nanoporous sorbent of organic pollutants” Adv. Colloid Interface Sci. 76-77 : 445-467 Pollard, S. J. T., S. E. Hrudey, and P. M. Fedorak (1994) “Bioremediation of petroleum-and creosote-soils : A review of constraits” Waste Manage. Res., 12 : 173-194 Reid, B. J., K. C. Jones, and K. T. Semple (2000) “Bioavailability of persistent organic contaminants in soils and sediments-a perspective on mechanisms, consequences and assessment” Environ. Pollut., 108 : 103-112 Reid, B. J., A. L. Swindell., I. J. Allen, and K. T. Semple (2005) “Predicting bioremediation endpoints based on cyclodextrin extractable fractions” In: B. C. Alleman and M. E. Kelley (Conference Chairs), In Situ and On-Site Bioremediation (2005). Proceedings of the Eighth International. In Situ and On-Site Bioremediation Symposium (Baltimore, Maryland; June 6-9,2005). ISBN 1-57477-152-3, Battelle Press: Columbus, OH., pp. F-15 Scribner, S. L., T. R. Benzing, S. Sun, and S. A. Boyd (1992) “Desorption and bioavailability of aged simazine residues in soil from a continuous corn field” J. Environ., 21 : 115-120 Semple, K. T., A. W. J. Morriss, and G. I. Paton (2003) “Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis” Euro. J. Soil Sci., 54 : 809-818 Semple, K. T., K. J. Doick., K. C. Jones., A. Craven., P. Burauel, and H. Harms (2004) “Defining bioavailability and bioaccessibility for the risk assessment and remediation of contaminated soils and sediments” Environ. Sci. Technol., 38 : 228A-231A. Sims, R. and J. Bass (1984) “Review of in-place treatment techniques for contaminated surface soils” Volume 1: technical evaluation. EPA Report No. EPA-540/2-84-003a Smith, S. C., C. C. Ainsworth, S. J. Traina, and R. J. Hicks (1992) “Effect of sorption on biodegradation of quinoline” Soil Sci. Soc. Am. J., 56 : 737-746 Steinberg, S. M., J. J. Pignatello, and B. L. Sawhney (1987) “Persistence of 1, 2-dibromoethane in soils: Entrapment in intraparticle micropores” Environ. Sci. Technol., 21 : 1201-1208 Stephen, R. H., W. S. Guy, A. K. David, and A. S. Garmon (1991) “Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions” Environ. Sci. Technol., 25 : 68-76 Stokes, J. D., G. I. Paton, and K. T. Semple (2006) “Behaviour and assessment of the bioavailability of organic contaminants in soil : Relevance for risk assessment and remediation” Soil Use and Manage., 21 : 475-486 Strbak, L. (2000) In-situ flushing with surfactant and cosolvents, Office of solid waste and emergency response technology innovation, U.S. EPA., Washington, DC. Supelco (1997) “SPME portable field sampler with 100μm PDMS fiber” T497174 Supelco (1998) “Supelco chromatography” 3223 USEPA (1992) “Framework for ecological risk assessment” EPA/630/R92/001. US Environmental Protection Agency, Washington, DC. Usha, V. (1989) “Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment” CRC press, Boca Ration, Florida. Volkering, F., A. M. Breure, A. Sterkenburg, and J. G. Van Andel (1992) “Microbial degradation of PAHs:effect of substrate availability on bacterial growth kinetics” Appl. Microbiol. Biotechnol. 36 : 548-552 Volkering, F. (1996) “Bioavailability and biodegradation of polycyclic aromatic hydrocarbons” PhD Thesis,Wageningen University, Wageningen, The Netherlands Wang, S. Y. and C. Vipulanandan (2001) “Biodegradation of naphthalene contaminated soils in slurry bioreactors” J. Environ. Eng. ASCE, 127 : 748-754 Weissenfels, W. D., H. J. Klewer, and J. Langhoff (1992) “Adsorpt ion of polycyclic aromatic hydrocarbons ( PAHs ) by soil particles: Influence on biodegradability and biotoxicity” Appl. Microbiol. Biotechnol., 36 : 689-696 White, J. C., J. W. Kelsey, P. B. Hatzinger, and M. Alexander (1997) “Factors affecting sequestration and bioavailability of phenanthrene in soils” Environ. Toxic. Chem. 16 : 2040-2045 Zhang, W. and E. J. Bouwer (1997) “Biodegradation of benzene, toluene and naphthalene in soil-water slurry microcosms” Biodegrad., 8 : 167-175 Zhang, W. X., J. B. Ehward, and P. B. William (1998) “Bioavailability of hydrophobic organic contaminants: Effects and implications of sorption-related mass transfer on bioremediation” Ground water mont. Rem. : 126-138
摘要: 
本研究以萘為目標污染物,針對不同污染齡、質地與有機質含量的土壤,利用固相微萃取(SPME)量測萘快速脫附至水相之自由溶解態濃度,藉此評估受萘污染土壤之生物可及性,並探討其與實際生物降解之關係,嘗試建立快速預測土壤中萘生物分解成效之技術。
由脫附試驗結果發現,土壤/水系統中有微生物存在會加速萘之脫附,但不會影響最終的萘殘餘量,顯示微生物主要攝取溶於水相中的萘,對於吸持在土壤中的部份則較難直接分解利用;生物降解實驗結果發現,污染時間與有機質含量的增加,皆會使土壤中萘的降解率下降,顯示萘會因有機質的分配作用而吸持於土壤,造成生物可及性下降,且隨著時間的增加,這種貯滯(sequestration)於土壤的現象愈顯著;而坋粒比例的增加,有助於提升微生物降解萘的速率,然而對於生物降解量沒有顯著的影響,由實驗數據推測粒徑最小的黏土,可能才是影響生物可及性較重要的因子。
比較 SPME 萃取量與生物降解之關係,結果顯示 SPME 有些微低估實際生物最終降解量的情形,但兩者間仍有很好的相關性存在;若針對生物快速分解的階段進行比較,可發現 SPME 能準確的評估其降解量,兩者幾乎為1:1的關係;由此認為以 SPME 所模擬之生物可及性,應能有效推估微生物的實際分解量。
由本研究成果推論,針對受萘污染土壤進行生物復育整治,若土壤中存在具有萘分解能力之微生物,且復育的環境不會對其生長造成限制,則 SPME 可取代一般全量萃取法,準確評估土壤中萘之生物可及性,並能替代傳統冗長的生物降解試驗,達到快速預測生物復育成效之目的。

The objective of this study was to use Solid Phase Micro Extraction (SPME) as a tool to assess the bioavailability of naphthalene in soil. SPME was applied for determination of the freely dissolved concentration of naphthalene that desorb rapidly to the aquatic system. Parameters including different aging time, texture and organic content of soil were tested and the correlation between bioavailability and in-situ biodegradation was compared. A method developed in this study is tested and established to rapidly predict the bioremediation efficacy.

The result of desorption test showed that the presence of microorganism could increase the desorption rate of naphthalene but had no effect on the residue ratio in soil / water system. This indicated that microorganisms primarily uptook the dissolvable naphthalene, but it was difficult for them to degrade naphthalene absorbed in the soil. The result of biodegradation test found that the biodegradable ratio decreased with an increase in the aging time and organic content of soil. This indicated that the bioavailability of naphthalene may decrease because of its partition into the organic matter of soil. With the increasing of time, a condition of sequestration to soil was more apparent. Increasing the ratio of silt enhanced the biodegradation rate of naphthalene, but it had no effect on the amount of naphthalene degraded by microorganisms. The results indicated that the clay with the smallest particle size could be the most important factor to affect bioavailability.

The correlation between SPME extractable naphthalene and biodegradable naphthalene gave a result that SPME underestimated the actual amount of biodegrad-
ation. Nevertheless, there was still a good relationship between SPME and biodegradat-
ion. The results also indicated that the rapidly degraded fractions accounted for the biodegradable part of naphthalene. Therefore, SPME was considered a promising technique to assess the biodegradable fraction of contaminants by microorganisms.
By the research, it could be inferred that SPME could take the place of exhausted extraction to accurately assess the bioavailability of naphthalene in the contaminated soil. Thus, SPME could substitute for the traditional time-consuming biodegradation tests and achieve the goal of predicting bioremediation efficacy rapidly.
URI: http://hdl.handle.net/11455/5338
其他識別: U0005-2708200708181000
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.