Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5340
標題: 厭氧生物處理串聯微量氧化法回收元素硫可行性研究
Recovering of Elemental Sulfur with the Combination of the Anaerobic and the Micro-Oxidation Reactors
作者: 劉瑞勇
Liu, Jui-Yung
關鍵字: anaerobic biological treatment;厭氧生物處理;elemental sulfur;sulfate-reducing bacteria;元素硫;硫酸鹽還原菌
出版社: 環境工程學系所
引用: 參考文獻 大專院校材料科技教育改進計畫, X光繞射分析實驗教材大綱,2004 工研院能資所,有害物質滲漏地下水層污染調查研究,1990。 王愛傑,王麗燕,任南琪,硫酸鹽廢水生物處理工藝進展,哈爾濱工業大學學報,第1446-1449頁,2004。 行政院勞工委員會及工業技術研究院,物質安全資料表,2001。 李季眉,以固定化之紫色含硫光合作用細菌處理豬糞尿廢水之硫化氫–連續流程試驗,第十六屆廢水處理技術研討會論文集,第130-140頁,1991。 李季眉,以紫色含硫光合作用細菌 Amoebobacter pedioformis strain CML 2 處理豬糞尿廢水之硫化氫,第十三屆廢水處理技術研討會論文集,第206-215 頁,1988。 唐高永、彭明靜、紹信、陳宜彰、張坦卿、阮國棟,光合成硫化菌處理廢水中硫離子之研究,第十二屆廢水處理技術研討會論文集,第187-197頁,1987。 張順欽,含高濃度硫酸鹽廢水生物處理法之基礎研究,碩士論文,國立交通大學土木工程研究所,新竹,1989。 張鎮南,曾四恭,鄭幸雄,趙家珍,謝永旭,高級廢水處理,滄海圖書,一版,第159-201頁,台北,1995。 許火順,從粉末繞射解析未知物之晶體結構,2003。 許樹恩、吳泰伯,X光繞射原理與材料分析,1996。 陳文懿,硫酸鹽生物還原程序之基礎研究,碩士論文,國立交通大學土木工程研究所,新竹,1988。 陳秋揚,林景行,生物處理法在工業廢水處理之應用,工業污染防治,第34期,第87-99頁,1990。 陳滄欣,以過氧化氫做為電子接受者在受油污染之土壤及地下水生物復育之研究,碩士論文,國立屏東科技大學環境工程與科學研究所,屏東,1999。 曾怡禎,厭氧反應槽的微生物生態,工業污染防治,第63期,第81-95頁,1997。 程郁聰,厭氧生物處理四氯乙烯代謝機制及菌相之探討,碩士論文,國立中興大學環境工程研究所,台中,2005。 冀濱弘,張非娟,高硫酸鹽有機廢水處理技術之進展,中國環境科學,第17期,第3-7頁,1999。 盧天惠,X光繞射與應用講義,國立清華大學材料工程系,新竹,2006 繆應祺,王志國,鄢衛東,國內外SRB技術的研究現狀及進展,江蘇大學環境工程系,江蘇,2006。 Aivasidis, A.and Anderson, K., Pre-Acidification: Concepts, Guidelines and Parameters for Application, Proc. 7th International Symposia on Anaerobic Digestion – South Africa, pp 668,1994. Baker, K. H. and Herson, D. S.,Introduction and Overview of Bioremediation. In Bioremediation, McGraw-Hill, pp 1-7,1994. Banat, I. M., Lindstrom, E. B., Nedwell, D. B., and Balba, M. T., Evidence for Coexistence of Two Distinct Functional Groups of Sulfate-Reducing Bacteria in Salt Marsh Sediment, Appl. Environ. Microbiol., Vol.42 , No. 6 , pp 985-992, 1981. Basu, R., Clausen, E. C., and Gaddy, J. I., Biological Conversion of Hydrogen Sulfide into Elemental Sulfur. Environ. Prog., Vol. 15, No. 4, pp 234-238, 1996. Brock, T. D. and Madigan, M. T., Biology of Microorganisms, 5th Edition, Prentice-Hall, pp 576-578, 1988a. Brock, T. D. and Madigan, M. T., Biology of Microorganisms, 5th Edition, Prentice-Hall, pp 630-632, 1988b. Buisman, C., Geraats, B. G., Ijspeert, P., and Lettinga, G., Optimization of Sulphur Production in a Biotechnological Sulphide-Removing Reactor , Biotechnol. Bioeng., Vol. 35, pp 50-56, 1990 Buisman, C., Ijspeert, P., Hof, A., Janssen, A., Hagen, R. T., and Lettinga, G. Kinetic Parameters of a Mixed Culture Oxidizing Sulfide and Sulfur with Oxygen, Biotechnol. Bioeng., Vol. 38, pp 813-820, 1991. Buisman, C., Ijspeert, P., Janssen, A., and Lettinga, G., Kinetics of Chemical and Biological Sulphide Oxidation in Aqueous Solutions, Wat. RES., Vol. 24, No. 5, pp 667-671, 1990. Buisman, C., Post, R., Ijspeert, P., Geraats, G., and Lettinga, G., Biotechnological Process for Sulphide Removal with Sulphur Peclamation, Acta Biotechnol. Vol. 9, No. 3, pp 255-267, 1989. Chung, Y. C., Huang, C. P., and Tseng C. P., Biodegradation of Hydrogen Sulfide by a Laboratory-Scale Immobilized Pseudomonas putida CH11 Biofilter, Biotechnol Prog., Vol. 12, No. 6, pp 773-778, 1996. Daniels, L., Belay, N., and Rajagopal, B. S., Assimilatory Reduction of Sulfate and Sulfite by Methanogenic Bacteria, Appl. Environ. Microbiol. Prog., Vol. 12, NO. 6, pp 773-778, 1996. Elliott, P., Ragusa, S., and Catcheside, D., Growth of Sulfate-Reducing Bacteria under Acidic Conditions in an Upflow Anaerobic Bioreactor as a Treatment System for Acid Mine Drainage, Wat Res., Vol. 32, No. 12, pp 3724-3730, 1998. Esaac, E. G. and Matsumura, F., Metabolism of Insecticides by Reductive Systems. Pharmac. Ther., Vol. 9,pp 1-26,1980. Ferris, M., and Ward, D. M., Seasonal Distrbutions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examined by Denaturing Gradient Gel Electrophoresis, Appl. Environ. Microbiol., Vol. 63, pp 1375-1381, 1997. Frank, J. M., LeFerriere, A., Fernander,M., Hubinger,S., and Hershey, J. P., Oxidation of H2S with H202 in Natural Waters, Environ. Sci. Technol., 23 ,pp 209-213, 1989. Henshaw, P. F., Bewtra, J. K., and Biswas, N., Hydrogen Sulphide Conversion to Elemental Sulphur in a Suspended-Growth Continuous Stirred Tank Using Chlorobium Limicola, Wat. Res., Vol. 32, No. 6, pp 1769-1778, 1998. Hilton, B. L.and Oleszkiewicz, J. A., Sulfide-Induced Inhibition of Anaerobic Digestion, J. Environ. Eng., Vol. 114, pp 1377-1391, 1998. Janssen, A. J. H., de Keizer, A., and Lettinga G., Colloidal Properties of a Microbiologically Produced Sulphur Suspension in Comparison to a LaMer Sulphor sol, Colloids Surfaces B: Biointerfaces 3, pp 111-117, 1994. Janssen, A. J. H., Lettinga, G., and de Keizer, A., Removal of Sulphide from Wastewater and Waste gases by Biological Conversion to Elemental Sulphur-Colloidal and Interfacial Aspects of Biologically Produced Sulphur Particles, Colloids Surfaces A: Physicochem. Eng. Aspects 151, pp 389-397, 1999. Kim, B. W. and Chung, H. N., Removal of Hydrogen Sulfide by Chlorobiam thiosufatophilum in Immobilized-cell and Sulfur-Settling Free-Cell Recycle Reactor, Biotethnol. Prog., Vol. 7, pp 495-500, 1991. King, J. K., Kostka, J. E., Frischer, M.E., and Saunders, F. M., Sulfate-Reducing Bacteria Methylate Mercury at Variable Rates in Pure Culture and in Marine Sediments, Appl. Envir. Microbiol., Vol. 66, pp 2430-2437, 2000. Koster, J. W., Rinzema, A., Vegt, A. L., and Lettinga, G., Sulfide Inhibition of the Methanogenic Activity of Granular Sludge at Various pH-levels, Wat. Res., Vol. 20, No. 12, pp 1561-1567, 1986. Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., and Veldkamp, H., Competition for Sulfate and Ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio Species Isolated from Intertidal Sediments, Appl. Environ. Microbiol., Vol. 47, No. 2, pp 329-334, 1984. Liu, W. T., Marsh, L., Cheng, H., and Forney, L. J., Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA, Appl. Environ. Microbiol., Vol. 63, pp 4516-4522,1997. Mackey, D. M. and Cherry, J. A., Groundwater Contamination: Pump and Treat Remediation. Environ. Sci. Technol., Vol. 23,pp 630-635,1999. McCarty, P. L., Bioengineering Issues Related to In Situ Remediation of Contaminated Soils and Groundwater, in G.S.Omenn(ed),Envion. Biotechnol. lenum, New York,pp 143-163,1988. Middleton, A. C. and Lawrence, A. W., Kinetics of Microbial Sulphate Reduction, J. Wat. Pollut. Control Fed, pp 1659-1670, 1977. Morel, F. M. M., Principles of Aquatic Chemistry, John Wiley and Sons, Inc., New York, 1983. Nishimura, S. and Yoda, M., Removal of Hydrogen Sulfide from an Anaerobic Biogas Using Bio-Scrubber, Wat. Sci. Tech., Vol. 36, No. 6-7, pp 349-356, 1997. Nyer, E. K., Groundwater Treatment Technology, Van Nostrand Reinhold, New York, 1985. Okabe, S., Nielsen, P. H., and Characklis, W. G., Factors Affecting Microbial Sulfate Reduction by Desulfovibrio desulfuricans in Continuous Culture: Limiting Nutrients and Sulfide Concentration, Biotechnol. Bioeng., Vol. 40, pp 725-734, 1992. Overmann, J. and Tuschak, C., Phylogeny and Molecular Fingerprinting of Green Sulfur Bacteria, Arch Microbiol., Vol. 167, pp 302–309, 1997. Parkin, G. F. and Owen, W. F., Fundamentals of Anaerobic Digestion of Wastewater Sludges, Journal of the Water Pollution Control Federation, Vol. 112, pp 867-920, 1986. Parkin, G. F., Sneve, M. A., and Loos, H., Anaerobic Filter Treatment of Sulfate-Containing Wastewaters, Wat. Sci. Tech., Vol. 23, pp 1283-1291, 1991. Piotrowski, M. R., Bioremediation Milestones, Wat. Environ. Technol., Vol 5, pp 49-53, 1993. Postgate, J. R., The Sulphate-Reducing Bacteria, Cambridge University Press, pp 8-11, 1979a. Postgate, J. R., The Sulphate-Reducing Bacteria, Cambridge University Press, pp 69-82, 1979a. Postgate, J. R., The Sulphate-Reducing Bacteria, Cambridge University Press, pp 86-87, 1979a. Purdy. K. J., Nedwell, D. B., and Embley, T. M., Analysis of the Sulfate-Reducing Bacterial and Methanogenic Archaeal Populations in Contrasting Antarctic Sediments, Appl. Envir. Microbiol., Vol. 69, pp 3181-3191, 2003. Ralph, M., Introduction to Environmental Microbiology, IA: Prentice-Hall, Englewood Cliffs, pp 34-35, 1974. Reis, M. A., Almeida, J. S., Lemos, P. C., and Carrondo, M. J. T., Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria, Biotechnol. Bioeng., Vol. 40, pp 593-600, 1992. Snoeyink, V. L. and Jenkins, D., Water Chemistry, John Wiley and Sons INC., New York, 1982. Speece, R. E., Anaerobic Biotechnilogy for Industrial Wastewater Treatment, Environ. Sci. Technol., Vol. 17, pp 416-417a, 1983. Sublette, K. L. and Sylvester, N. D., Oxidation of Hydrogen Sulfide by Continuous Cultures of Thiobacillus denitrifications, Biotechnol. Bioeng., Vol. 29, pp 753-758, 1987. Tauer, R. K., Dissimilatory Sulfate Reduction ith Acetate as Electron Donor, Phil. Trans. R. Lond., B298, 467, 1982. Tichy, R., Janssen, A., Grotenhuis, J. T. C., Van Abswoude, R., and Lettinga, G., Oxidation of Biologically-Produced Sulphur in a Continuous Mixed-Suspension Reactor, Wat. Res., Vol. 32, No. 3, pp 701-710, 1996. Uberoi, V. and Bhattacharya, S. K., Sulfate-Reducing Bacteria in Anaerobic Propionate Systems, J. Environ. Eng., Vol. 123, pp 675-682, 1997. Visser, A., The Anaerobic Treatment of Sulfate Containing Wastewater, Doctoral Thesis Wageningen Agricultural University, Wageningen, The Natherlands, pp 3, 1995a. Visser, A., The Anaerobic Treatment of Sulfate Containing Wastewater, Doctoral Thesis, Wageningen Agricultural University, Wageningen, The Natherlands, pp 9-47, 1995a. Wawer, C. and Muyzer, G., Genetic Diversity on Desulfovibrio spp. in Environmental Samples Analyzed by Denaturing Gradient Gel Electrophoresis of [NIFE] Hydrogenase Gene Fragments, Appl. Environal. Microbiol, Vol. 61, pp 2203-2210, 1995. Wheatley, A. D., Johnson, A., and Winstanley, C. I., The Reliability of Anaerobic Digestion for the Treatment of Food Processing Effluents, Anaerobic Digestion, IAWPRC, pp 135-146, 1988.
摘要: 
摘要
本研究利用生物處理及化學氧化串聯之二階段處理程序,進行硫酸鹽還原成硫化氫,以及將硫化氫氧化為元素硫的反應,期望在厭氧生物處理減少硫化氫排放之餘,亦可分離回收元素硫,以期達到最有效率之高濃度含硫酸鹽廢水之處理程序。
經由高濃度硫酸鹽進流馴養硫酸鹽還原菌的實驗中,結果顯示本厭氧反應槽在COD濃度固定在4000 mg/L 的狀況下,所能承受的硫酸鹽濃度最高範圍應在1500-2000 mg/L 之間。COD/ SO42-比值為2.8~2之間。在實驗結果結論為COD/ SO42-比值確實是控制硫酸鹽還原菌還原硫酸鹽的一項重要因素:當COD/ SO42-比值控制在2.5以上時,硫酸鹽還原率均可大於90 % 以上;當COD/ SO42-比值等於2時,硫酸鹽還原率均小於60 % 以下,由此可知,想要保持反應槽在較高的硫酸鹽處理效率,需將COD/ SO42-比值控制在大於2的範圍。
在研究微量化學氧化法的實驗中,本研究結果發現,當批次瓶內ORP控制在-100 mV時,水溶液以HS-為主要化合態,當緩緩提升ORP,即可觀察到HS-濃度下降,轉換成氧化態的硫氧化物形式出現;當控制在100 mV時,批次瓶中HS-幾乎完全轉換成硫氧化物的形式;而當批次瓶ORP控制在-50~50 mV的範圍內可以觀察到黃色微粒降解狀態,亦有回收黃色微粒的情況發生。不過其控制需相當謹慎,過高或過低的操作條件下均有不同的化學現象產生,並會嚴重影響到元素硫的回收量。
在X光粉末繞射實驗中,結果發現我們實驗所設計的操作狀態下,確實有元素硫的生成,可證明我們所串聯的反應槽確實發揮了他的功效,而其反應套組亦是確實可行的。

Abstract
This research focused on the application of two stage treatment process containing biological treatment and chemical oxidation method in series to recovery S from wastewaters. This process could not only reduce sulfate to H2S but also oxidize H2S to S. This experiment tried reduce the emission of H2S and recycle elemental sulfur under anaerobic and aerobic conditions. The expectation of this experiment was to establish a treatment process for the wastewater with high concentrations of sulfate.

In the experiment of acclimation SRB with high concentrations of sulfate, the results indicated that when the influent COD was 4000 mg/L, the corresponding influent sulfate range was between 1500-2000 mg/L, and the COD/SO42- was in the range of 2.8-2. It demonstrated that the COD/SO42- ratio was certainty an important factor to control the sulfate reduction. When COD/SO42- was controled at 2.5, the sulfate reducing rate was over 90%, Comparatively, when COD/SO42- was controled at 2, the sulfate reducing rate was less than 60%, Therefore, if the system wants to maintain a higher efficiency of treating sulfate, it needs to control the COD /SO42- in the range over 2.

In the experiment of micro-chemiacl oxidation, the results indicated that when the ORP controled at -100 mV, HS- was the main compound in the solution. When ORP rised, it was observed that HS- concention got down, and being transformed to oxysulfide. When ORP controled at 100 mV, HS- was almost complete transformed to oxysulfide. When ORP control in the range of -50~50 mV, it was observed that some yellow particles precipitated and it could be recoverd. It was necessary to control the system very carefully,Otherwise, the extreme operating situation would cause different chemical reaction and affect the amount of particle recovery.

In results of XRPD indicated it could be found that the elemental sulfur was formed in this experiment. Furthermore, a continuous-fed reactors has been proven to be effective and feasible for the recovery of S from wastewaters.
URI: http://hdl.handle.net/11455/5340
其他識別: U0005-2708200708192800
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.