Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5364
標題: 高溫好氧處理對造紙纖維廢水之可行性初步研究
A study of thermophilic aerobic treatment on pulp and paper wastewaters
作者: 王宇萱
Wang, Yu-Hsiuan
關鍵字: thermophilic aerobic treatment system;高溫好氧處理;pulp wastewater;carboxymethylcellulose;造紙廢水;羧酸甲基纖維素
出版社: 環境工程學系所
引用: 參 考 文 獻 Alexander, M. 1977. Iintroduction to Soil Miocrobiology. John Wiley and Sons, INC., N. Y. Bisaria, V. S. and T. K. Ghose. 1981. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes, and products. Enzyme and Microbial Technology., 3, 90-104. Béguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiology Reviews., 13, 25-58. Bérubé, P. R. and E. R. Hall. 1999. Treatment of evaporator condensate using a high temperature membrane bioreactor: determination of maximum operating temperature and system costs. In: Proceedings of TAPPI 1999 International Environmental Conference, Toronto, Canada., 769–80. Couillard, D. and S. Zhu.1993. Thermophilic Aerobic Process for Treatment of Slaughterhouse Effluent with Protein Recovery. Enviro. Pollut., 79, 121-126. D’Elia, J. and W. Chesbro. 1992. Maintenance energy demand affects biomass synthesis but not cellulase production by a mesophilic Clostridium, Journal of Industrial Microbiology., 10, 123–133. Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi. 2005. Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor. Process Biochemistry., 40, 1125-1129 Felix, C. R. and L. G. Ljungdahl. 1993. The cellulosome: the exocellular organelle of Clostridium. Annual Review of Microbiology., 47, 791-819. Ferris, M. J. and D. M. Ward. 1997. Seasonal distrbutions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 63, 1375-1381. Gehm, H. W. 1956. Activated sludge at high temperatures and high pH values. Biol. Treatment Sewage Ind. Wastes 1, 352-355. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem., 59, 257-268. Gan, Q., S. J. Allen, and G. Taylor. 2003. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modeling. Process Biochemistry., 38, 1003-1018. Grunditz, C. and G. Dalhammar. 2001. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Research., 35, 433-440. Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter. 1982. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives of Microbiology., 132, 47-50. Heuer, J. G., K. Li, and T. C. Kaufman. 1995. The Drosophila homeotic target gene centrosomin(cnn)encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development., 121, 3861-3876 Hilde’n, L. and G. Johansson. 2004. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnology Letters., 26, 1683–1693. Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe. 1983. Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent. Archives of Microbiology., 136, 254-261. Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet. 2005. Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor treating swine waste, Appl. Microbiol. Biotechnol,. 66, 115–122. Kurian, R., G. Nakhla, and A. Bassi. 2006. Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR). Chemosphere., 65, 1204-1211. Kabrick, R.M. and Jewell, W.J. 1982. Fate of pathogens in thermophilic aerobic sludge digestion. Water Research., 16, 1051-1060. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63, 4516-4522. LaPara, T. and J. Alleman. 1997. Autothermal thermophilic aerobic waste treatment system, a state-of-the-art review. Purdue University. LaPara, T. and J. Alleman. 1999. Thermophilic aerobic waste treatment, review paper. Water Research., 33, 895-908. LaPara, T., C. Nakatsu, L. Pantea, and J. Alleman. 2001. Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development. Water Research., 35, 4417-4425. Mandels, M. and E. T. Reese. 1957. Induction of cellulose in Trichoderma Viride as influenced by carbon sources and metals. Journal of Bacteriology., 73, 269-278. Miller, G. L.1959. Use of dinitrosalicylic as reagent for the determination of reducing sugars. Anal. Chem., 31, 426-428. McCarty, P. L. 1988. Bioengineering issued related to in situ remediation of contaminated soils and groundwater. Environ, Biotechnol. lenum, New York. 143-163. Malladi, B. and S.C. Ingham. 1993. Thermophilic aerobic treatment of potato-processing wastewater. World Journal Microbiology and Biotechnology., 9, 45–49. Mohaibes, M. and H. Heinonen-Tanski. 2004. Aerobic thermophilic treatment of farm slurry and food wastes. Bioresource Technology., 95, 245-254. Rintala, J. and R. Lepisto. 1993. Thermophilic anaerobicaerobic and aerobic treatment of kraft bleaching effluents. Water Science and Technolog., 28, 11-16. Rittmann, B. E. and P. L. McCarty. 2001. Environmental Biotechnology: Principles and Application. McGRAW-HILL INTERNATIONAL EDITIONS, Singapore, 16-17. Rudolfs, W. and H. R. Amberg. 1953. White water treatment V. aeration with nonflocculent growths. Sewage Ind. Wastes., 25, 70-78. Russell, J. B. and G.. M. Cook. 1995. Energetics of bacterial growth: balance of anabolic catabolic reactions. Microbiological Reviews., 59, 48–62. Rozich, A. F. and K. Bordacs. 2002. Use of thermophilic biological aerobic technology for industrial wastewater treatment. Water Science and Technolog., 46, 83–89. Sűrűcű, M. H., E. S. K. Chian, and R. S. Engelbrecht. 1976. Aerobic thermophilic treatment of high strength wastewaters. J. WPCF., 48, 669-679 . Stover, E. L. and G. J. Samuel. 1997. High-Rate thermophilic pretreatment of high strength industrial wastewaters. In: Proceedings of the 52nd Industrial Waste Conference, Purdue University, Lafayette, Oklahoma 74076. Sarlin, T., S. Halttunen, P. Vuoriranta, and J. Puhakka. 1999. Effect of chemical spills on activated sludge treatment performance in pulp and paper mills. Water Science and Technology., 40, 319-325. Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa. 2000. Complete decomposition of biological waste sludge by thermophilic aerobic bacteria. Water Science and Technology., 42, 81-88. Shiota, N., A. Akashi, and S. Hasegawa. 2002. A strategy in wastewater treatment process for significant reduction of excess sludge production. Water Science and Technology., 45, 127-134. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Critical Reviews in Biotechnology., 22, 33-64. Tripathi, C. S. and D. G. Allen. 1999. Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent, Water Research., 33, 836–846. Thompson, G.., J. Swain, M. Kay, and C. F. Forster. 2001. The treatment of pulp and paper mill effluent: a review. Bioresource Technology., 77, 275-286. US EPA. 1990. Environmental regulation and technology: Autothermal thermophilic aerobic digestion of municipal wastewater sludge. EPA/625/10-90/007, Sep. Ugwuanyi, J. O., L. M. Harvey, and B. McNeil. 2005. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology., 96, 707-719. Ugwuanyi, J. O. 2007. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation. Bioresource Technology. Wood, T. M. 1985. Properties of cellulolytic enzyme systems. Biochem. Soc. Trans., 13, 407-401. 彭元興,2004,造紙產業用水管理,漿紙技術,第八卷,第二期第19-41頁。 台灣區造紙工業同業公會,2004,造紙產業介紹,台灣區造紙工業同業公會。 盧文俊,杜培欣,1996,台灣地區工業用水現況調查分析。 黃坤輝,2006,造紙廢水處理設施功能評估與改善對策之研究,碩士論文,國立中興大學環境工程研究所,台中。 經濟部環保署工業減廢聯合輔導小組,1993,工業減廢技術手冊之造紙工業,經濟部工業局。 經濟部工業局,1995,造紙業廢水污染防治資料彙編,經濟部工業局。 經濟部水利署,2005 ,94年工業用水量統計報告。 行政院環境保護署,回收處理流程 ,http://recycle.epa.gov.tw/public/public4.asp#4 薛勝豐及李季眉,1997,儲存消化現象控制污泥膨化,第二十二屆廢水處理技術研討會,中華民國環境工程學會。 謝哲松,1999,活性污泥法之操作控制,國立編譯館。 許以樺,2000,以高溫好氧處理油脂廢水可行性研究,碩士論文,國立中興大學環境工程研究所,台中。 朱志耀,1973,製漿造紙學,中華書局。 詹佩珍,2002,製紙廠廢水處理單元最適化操作條件之建立------利用田口品質工程評估模式,碩士論文,國立高雄第一科技大學環境與安全衛生工程所,高雄。 彰化銀行產業動態報導,2003,造紙工業概況,研究發展處。 鄭俊忠,2005,CFSBR好氧相/缺氧相即時控制系統改良之研究,碩士論文,國立中央大學環境工程研究所,桃園。 陳嘉芬,1999,現代遺傳學,藝軒圖書出版社,台北市。 陳恆陽,2005,以載體嵌合技術改善造紙廢水活性污泥沉降性之研究,私立朝陽科技大學環境工程與管理研究所,碩士論文,台中。 程郁璁,2005,厭氧生物處理四氯乙烯代謝機制及菌相之探討,碩士論文,國立中興大學環境工程研究所,台中。 宋倫國,吳國源,吳仲賢,1998,高溫好氧處理高濃度有機廢水實例,第二十三屆廢水技術研討會,工業污染防治技術服務團。 顏子穎及王海林譯,1998,精編分子生物學實驗指南,科學出版社,北京市。
摘要: 
本研究的目的在探討造紙廢水以高溫好氧處理之可行性,探討方式為以高溫好氧馴化槽內之菌液為試驗菌種來源,並藉批次試驗方式分析溫度與水溶性纖維素濃度兩種變因對高溫好氧菌降解水溶性纖維素之影響;實驗最終將利用PCR-DGGE方法來分析高溫高溫好氧纖維素分解菌馴化槽中的菌相組成,以釐清馴化槽中的高溫纖維素分解菌菌種。
不同培養溫度之批次試驗發現,高溫環境下之碳源降解率、初始比基質利用率以及初始比酵素活性皆較中溫環境下高,顯示馴化槽內之菌株最適生長溫度範圍應在高溫環境內;試驗亦顯示菌株於65℃高溫環境下具有較低之生長係數,倘若將低生長係數之優點應用在實場之高溫好氧處理系統,應可預測該系統內之活性污泥量會較中溫系統少。
不同纖維素初始濃度之批次試驗發現,CMC-Na(carboxymethylcellulose sodium salt)初始濃度分別為500、1000、2000及4000 mg/L時,其所對應之有機碳降解速率各為14.7、14.2、10.0及11.4 mg-C/L-day,去除率分別為62、45、30及26%。意即當馴化槽中微生物量固定時,無論初始纖維素濃度為何,其單位時間內所能利用之纖維素量皆相近,但纖維素去除率則隨著纖維素濃度之增加而下降;研究亦顯示低CMC-Na濃度下,初始比基質利用率及初始比酵素活性會較高濃度環境高,表示相較於高CMC-Na濃度之環境,微生物較能適應低濃度之環境。
實場造紙廢水中多含不可溶纖維素與複雜的化學藥劑,因此就批次試驗結果推論,可預期以高溫好氧處理系統處理造紙廢水,整體去除率應不盡理想。若需應用高溫好氧處理系統處理造紙廢水,應考慮延長處理時間並降低進流基質sCOD(sTOC)濃度,因為高進流基質濃度會降低碳源去除率並影響纖維素水解酵素活性之表現。

The objective of this study was to evaluate the feasibility of the thermophilic aerobic system on pulp wastewater treatment. This study focused on the effect of different incubation temperatures and different soluble-cellulose concentrations on the degradation of cellulose by the thermophilic aerobic cellulose-degrading bacteria acclimated in the thermophilic aeration reactor. Finally, we employed PCR and DGGE to determine the microbial community of mixed culture in the thermophilic aeration reactor.
The results of batch test at different incubation temperatures showed that the carbon degradation rate, the initial specific substrate utilization rate, and the initial specific CMCase activity were higher in thermophilic condition than that in the mesophilic condition. The result suggested that the microorganisms used in this study grew best in thermophilic condition. The results also indicated that thermophilic aerobic treatment system had lower growth yield than the mesophilic aerobic treatment system did. The results of batch test at different soluble-cellulose concentrations showed that the carbon degradation rates were very close at different incubation conditions. It also indicated that the initial specific substrate utilization rate and the initial specific CMCase activity were higher at low soluble-cellulose concentration than at high soluble-cellulose concentration.
The experimental results indicated that the thermophilic aerobic treatment system was technically not feasible for biodegradation of pulp wastewater, because pulp mill wastewater most contained insoluble-cellulose and unidentified chemicals. However, extending the sludge retention time and reducing the soluble-cellulose concentration might help to increase the efficiency of thermophilic aerobic treatment system on pulp wastewater.
URI: http://hdl.handle.net/11455/5364
其他識別: U0005-3101200815345000
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.