Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5372
標題: 鍛燒溫度及鍛燒氣體於製備過渡金屬鈷觸媒催化甲苯之研究
Study the Effect of Calcination Temperatures and Calcination Gases on Cobalt Catalyst for Toluene Conversion
作者: 陳俊寬
Chen, Jun-Kuan
關鍵字: Catalyst;觸媒;Calcination;Carbon nanotube;Al2O3;VOC oxidation;鍛燒;奈米碳管;氧化鋁;揮發性有機物氧化反應
出版社: 環境工程學系所
引用: Abayomi J. Akande, Raphael O. Idem, and Ajay K. Dalai. (2005). Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production. Applied Catalysis A: General, Vol. 287, pp. 159–175. Alvim-Ferraz, M. C. M., and Gaspar, C. M. T. B. (2004). Active carbons impregnated before activation of olive stones: Catalytic activity to remove benzene from gaseous emissions. Journal of Physics and Chemistry of Solids, Vol. 65(2-3), pp. 655-659. Barrett, W. E., and Craver, B. N. (1951). A method of sensitizing guinea pigs to horse serum that eventuates in 100 per cent mortality after challenging. Journal of Allergy, 22(4), 361-367. Bethune D. S., Kiang. C. H. (1993). Cobalt-caralyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, Vol. 363, pp. 605-607. Bourikas, K., Vakros, J., Fountzoula, Ch., Kordulis Ch., and Lycourghiotis, A. (2007). Interface science for optimizing the size of oxidic nanoparticles in supported catalysts. Catalysis Today, Vol. 128, pp. 138–144. Chen, C. L. (1993). Study on Reaction Kinetics of Volatile Organics by Catalytic Incineration Using Pt Catalyst. M. S. Thesis, Graduate Inst. Of Environ. Eng., National Sun Yet Sen Univ., Kaohusing, Taiwan, R.O.C. Chu, W. and Windawi, H. (1996).Control VOCs via Catalytic Oxidation. Chem. Eng. Prog., Vol. 92, pp. 37. Chu, Wei., Chernavskii, Petr A., Gengembre, Léon., Pankina, Galina A., Fongarland, Pascal., Khodakov. and Andrei Y. (2007). Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. Journal of Catalysis, Vol. 0, pp. 1–16. Devinny J. S., Deshusses M. A. and Webster T. S. (1998). Biofiltration for air pollution control, Lewis Publishers. Dumas, J. M. and Barbier, J. (1989). Preparation of Supported Copper Catalyst II. Reduction of Copper/Alumina Catalysts. Applied Catalysis., Vol. 47, pp. L9. Farrauto, R.J. and Bartholomew, C.H., (1997). Fundamentals of Industrial Catalytic Processes. Blackie, Chapman & Hall, London. Furlong, B. k., Hightower, J. W., Chan, T.Y., Guciz, L., and Sarkany, A. (1994). 1.3-Butadiene Selective Hydrogenation over Pd/Alumina and CuPd/Alumina Catalysts. Applied Catalysis., Vol. 117, pp. 41. Gil, A., Diaz, A., Gandia, L. M., Montes, M. (1994) “Influence of the preparation method and nature of the support on the stability of nickel catalysts”, 145 Applied Catalysis., Vol. 109, pp. 167-179. Huang, T. J., (1990). Effect of Calcination Condition on Surface Properties of Copper/Alumina Catalysts. J. of The Chin. l. Ch. E., Vol. 21, pp.5. Huang, T. J. and Yu, T. C. (1991). Calcination Condition on Copper/Alumina Catalysts for Carbon Monoxide Oxidation and Nitric Oxide reduction. Applied Catalysis., Vol. 71, pp. 275. Iijima. S. (1991). Helical microtubules of graphitic carbon. Nature, Vol. 354, pp. 56. Ji, L., Lin, J., and Zeng, H. C. (2000). Metal-Support Interactions in Co/Al2O3 Catalysts: A Comparative Study on Reactivity of Support. J. Phys. Chem. B, Vol. 104, pp. 1783-1790. Khassin, Alexander A., Yurieva, Tamara M., Kaichev, Vasiliy V., Bukhtiyarov, Valerii I., Budneva, Anna A., Paukshtis, Evgeniy A., Parmon, Valentin N. (2001). Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. Journal of Molecular Catalysis A: Chemical, Vol. 175, pp. 189–204. Li, S. Y., Li, S. L., and Li, B. L. (1997). Reactions of Organic Exhausts and the Thermal Stability of Catalysts. Dalian Institute of Chemical Physics, Chinese Academy of Science, Vol. 62, No.1, pp. 89-95. Li, Guohui, Hu, Linjie, Josephine M. Hill. (2006). Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation, Applied Catalysis A:General, Vol. 301, pp.16-24. Lippens, B. C., and de Boer, J. H. (1965). Studies on pore systems in catalysts : V. the t method. Journal of Catalysis, Vol. 4(3), pp. 319-323. Lojewska, J., Kolodziej, A., Dynarowicz-Latka, P., & Weselucha-Birczynska, A. (2005). Engineering and chemical aspects of the preparation of microstructured cobalt catalyst for VOC combustion. Catalysis Today, Vol. 101(2), pp. 81-91. Luo, M., Yuan, X., and Zheng, X. (1998). Catalyst characterization and activity of ag-mn, ag-co and ag-ce composite oxides for oxidation of volatile organic compounds. Applied Catalysis A: General, Vol. 175(1-2), pp. 121-129. Methivier, C., Beguin, B., Burn, M., Massardier, J. and Bertolini, J. C. (1998). Characterization and Catalytic Activity for the Methane Total Oxidation. Journal of Catalysis, Vol. 173, pp. 374. Mile, Stirling, B. D., Zammitt, M. A., Lovell, A., and Webb, M. (1988). The Location of Nickel Oxide and Nickel in Silica-supported Catalysts:Two Forms of “NiO” and the assignment of Temperature Programmed Reduction Profiles. Journal of Catalysis, Vol. 114, pp. 217. Peña O’Shea, V.A. de la, Álvarez-Galván, M.C., Fierro, J.L.G., and Arias, P.L. (2005). Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol. Applied catalysis B: Environmental, Vol. 57, pp.191-199. Robert, J. F. (1992). Environmental Catalysts. Chemical Engineering, Vol. 7, pp. 34-44. Sivaraj Chokkaram, Ram Srinivasan, Diane R. Milburn, and Burtron H. Davis. (1997). Conversion of 2-octanol over nickel-alumina, cobalt-alumina, and alumina catalysts. Journal of Molecular Catalysis A: Chemical, Vol. 121, pp. 157-169. Spivey, J. J. (1987). Complete Catalytic Oxidation of Volatile Organics. Industrial Engineering Chemical Research. Vol.26, pp. 2165-2180. Sungkono, I. E., Kameyama, H., and T. Koya. (1997). Development of Catalytic Combustion of VOC Materials by Anodic Oxidation Catalyst. Applied Surface Science, Vol. 121-122, pp. 425-428. Theodora Ataloglou, John Vakros, Kyriakos Bourikas, Christina Fountzoula, Christos Kordulis, Alexis Lycourghiotis. (2005). Influence of the preparation method on the structure–activity of cobalt oxide catalysts supported on alumina for complete benzene oxidation. Applied Catalysis B: Environmental, Vol. 57, pp. 299–312. Wang, C. (2004). Al2O3-supported transition-metal oxide catalysts for catalytic incineration of toluene. Chemosphere, Vol. 55(1), pp. 11-17. Wu, J. C. and Chang, T. Y. (1998). VOC Deep Oxidation over Pt Catalysts Using Hydrophobic Supports. Catalysis Today, Vol. 44(1-4), pp. 111-118. Wu, Ren-Jang., Hu, Cheng-Hung., Yeh, Chuin-Tih., and Su, Pi-Guey. (2003). Nanogold on powdered cobalt oxide for carbon monoxide sensor. Sensors and Actuators B: Chemical, Vol. 96, pp.596–601. 王奕凱、邱宏明、李秉傑合譯,非均勻系催化原理與應用,渤海堂,台北巿1988年。 王仁澤譯,毒物學概論,高立圖書有限公司,1997。 代小平、余常春、沈師孔,鈷負載量和鍛燒溫度對F-T合成用Co/Al2O3催化劑活性的影響,催化劑學報,第21卷第2期,Vol. 21, No. 2。 朱信,工業局,石化工業因應揮發性有機污染物管制規範之對策研究,經濟部工業局專案研究計劃,1994。 江旭禎,儀器總覽:化常分析儀器,國科會,第77-79頁。 江森雄,石化工業區揮發性有機氣體改善管理之研究-以頭份工業區為例,中華大學工業工程與管理研究所,碩士論文,2000。 行政院環境保護署,揮發性有機空氣污染物管制法規(含收費制度)研訂、推動及檢討計畫,計畫編號:EPA-95-FA12-03-A142,2006。 李偉勝,模場與實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究,國立中山大學環工系,碩士論文,1999。 李元堯,21 世紀的尖端材料-奈米碳管,化工技術,第11 卷第2 期,第140-159 頁,2003。 吳岱恩,鈷的氧化價數對CoOx和Au/CoOx催化CO氧化活性的影響,國立清華大學化學研究所,碩士論文,2000。 吳佩蓉、謝祝欽、蔡俊鴻、姚永貞、魏憶琳、余志達、吳俊儀,徵收揮發性有機物收費可能性評估與規劃架構之探討,中華民國環境工程學會,第十八屆空氣污染控制技術研討會論文集,高雄,2001 年。 吳樺光,汽車表面塗裝業VOCs管制理論與實務,元智大學機械工程研究所,碩士論文,2002。 呂玲儀,多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究,國立中興大學環工系,碩士論文,2007。 柯以侃 主編,儀器分析,文京圖書出版,1996。 洪昭南、徐逸明、王宏達,奈米碳管結構及特性簡介,化工,第49 卷第1 期,第23-30 頁,2002。 洪文雅,揮發性有機廢氣處理技術簡介,經濟部工業局台灣環保產業,雙月刊,第21期,2003。 莊文博,銅鉻雙金屬擔體觸媒對機車廢氣中一氧化碳與碳氫化合物處理之研究,國立清華大學化工所,碩士論文,1993。 張志成,固體吸附技術於工業空調除濕淨化之應用,中國冷凍空調雜誌,pp. 65-75,1996。 陳冠豪,以溶膠凝膠法製備MnOx/Al2O3觸媒焚化處理三氯乙烯之研究,國立成功大學環工系,碩士論文,2003。 陳俐穎,多元醇法製備奈米氧化金屬觸媒於低溫下催化VOCs之研究,國立中興大學環工系,碩士論文,2006。 梁博傑,以觸媒氧化方式處理VOC有機揮發性氣體理論及實例簡介,產業環保工程實務技術研討會論文集,2002。 梁博傑,VOC觸媒氧化處理技術介紹,經濟部工業局台灣環保產業,雙月刊,第21期,2003。 國立中央大學奈米觸媒研究中心,奈米金屬在觸媒反應之應用四年計畫,計畫編號:92-EC-17-A-09-S1-002,2003。 楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環境工程研究系,碩士論文,2000。 楊秀慧,高氧化態支撐性氧化鈷的製備與特性鑑定,國立清華大學化學研究所,碩士論文,2003。 蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。 蔡辰葳,瓦斯熱水爐一氧化碳觸媒轉化器之研究,中華民國第四十五屆中小學科學展覽會,2006。 廖崇億、林耀東,鍛燒溫度對奈米氧化鐵表面特性影響之研究,中華民國環境工程學會,第二十四屆空氣污染控制技術研討會論文集,高雄,2007年。 劉國棟,VOC管制趨勢展望,工業污染防治,第10卷,第48期,pp.15-31,1993年。 鄭漢聰,活性碳擔持觸媒對NO去除之研究,國立中興大學環境工程研究所,碩士論文,2005。 謝國田,VOC觸媒焚化技術介紹,經濟部工業局台灣環保產業,雙月刊,第18期,2003。 簡金城,含銅觸媒對汽機車廢氣處理之研究,國立清華大學化工所,博士論文,1995。 魏資穎、沈克鵬,PVC合成皮業有機廢氣處理技術建議,中華民國環境工程學會,第十八屆空氣污染控制技術研討會論文集,高雄,2001年。 顏駿翔,添加Mn/γ-Al2O3 於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究,國立中山大學環工系,碩士論文,2001。 竇維平,利用螢石型導氧離子氧化物擔體提昇氧化銅觸媒的還原性及催化活性之研究,國立清華大學化工系,博士論文,1995。
摘要: 
揮發性有機化合物(volatile organic compounds, VOCs)已被認為是主要空氣污染物之一,而觸媒焚化係利用觸媒催化反應現象,降低廢氣中VOCs氧化之活化能,使觸媒可於較低溫環境下即能有效地氧化破壞 VOCs。
由於中孔洞觸媒擔體能增加反應過程時對氣體分子之吸附能力,使得中、小粒徑之氣體分子可順利擴散至孔洞內與活性相進行催化反應。因此,本研究選擇中孔材質之氧化鋁及奈米碳管(CNTs)做為觸媒之擔體,鈷為金屬活性相,以自製的觸媒去除VOCs。利用含浸法製備鈷金屬觸媒,並且探討在不同之鍛燒溫度(300℃、450℃及600℃)及不同鍛燒氣體(空氣及氫氣)下,再利用ICPMS、ESCA、XRD、FTIR進行觸媒特性分析。
結果指出,以氧化鋁為擔體,鍛燒氣體為空氣或氫氣,隨著鍛燒溫度的上升,對甲苯之轉化率皆下降。在空氣下鍛燒,甲苯之轉化率依序為Co/Al2O3-450A(44%)>Co/Al2O3-600A(31%)>Co/Al2O3-300A(15%);在氫氣下鍛燒,甲苯之轉化率依次為Co/Al2O3-450H(86%)>Co/Al2O3-600H(76%)>Co/Al2O3-300H(63%)。
以奈米碳管為擔體時,在空氣下以300℃鍛燒之觸媒,其對於甲苯之轉化率24%;在氫氣下以300℃及450℃鍛燒之觸媒,其對於甲苯之轉化率依次為Co/CNT-450H(95%)>Co/CNT-300H(90%)。而由於在空氣下鍛燒溫度為450℃及600℃,及在氫氣下鍛燒溫度為600℃時,奈米碳管有嚴重之燒失現象,因此無法探討其對於甲苯之轉化率。
由研究結果顯示,利用氫氣鍛燒之觸媒,不管擔體為氧化鋁或奈米碳管,其對於甲苯之轉化率明顯較由空氣鍛燒之觸媒為佳。鍛燒溫度450℃時,氧化鋁觸媒及奈米碳管觸媒對於甲苯轉化率皆最高,在600℃鍛燒時次之,而鍛燒溫度300℃時,對於甲苯轉化率最低。以氧化鋁為擔體,在鍛燒時會和鈷金屬作用而產生CoAl2O4,且鍛燒溫度愈高,形成CoAl2O4愈多,此為造成甲苯轉化率降低之因素;而以奈米碳管為擔體時,在鍛燒時不會與鈷金屬作用,因此其對於甲苯轉化率優於氧化鋁觸媒;而不同鈷之價態,對於甲苯之轉化率依序為: Co>Co3O4>CoO>CoAl2O4。

Volatile organic compounds (VOCs) are considered as one of the main air pollutants. Catalytic combustion shows the good performance on VOC conversion at low temperature by reducing the active energy of VOC oxidation.
The mesoporous catalysts result in medium and small gaseous molecules which were easily diffused into the pores to react with active sites. As this result, the adsorption capacity of the catalyst was increased and the catalytic efficiency was enhanced. In this study, the mesoporous materials, commercial Al2O3 and carbon nanotube (CNTs), were chosen as catalyst supports, and cobalt was chosen as active site for VOC oxidation. The cobalt catalysts were prepared by the impregnation method ,and the catalytic activity of catalysts were compared with various calcination temperatures (300℃、450℃ and 600℃) and different calcination atmospheres (air and hydrogen). Catalysts were characterized by means of ICPMS, ESCA, XRD, and FTIR.
For Al2O3-supported catalysts, the experiment results show that no matter which calcination atmosphere was chosen, the toluene conversion was reduced by the raising calcination temperatures. The activity of the Al2O3-supported catalysts, which were calcined in air, was observed to follow the order : Co/Al2O3-450A(44%)>Co/Al2O3-600A(31%)>Co/Al2O3-300A(15%) ; and the ones which were calcined in hydrogen was observed to follow the order : Co/Al2O3-450H(86%)>Co/Al2O3-600H(76%)>Co/Al2O3-300H(63%).
For CNTs-supported catalysts,when the CNTs-supported catalysts were calcined in air at 300℃, the toluene conversion was 24% ; but when being calcined in hydrogen at 300℃ and 450℃, the activity of the CNTs-supported catalysts were observed to follow the order : Co/CNT-450H(95%)>Co/CNT-300H(90%). However, during the catalyst preparation, the CNTs-supported catalysts burning off were occurred when the catalysts were calcined in air at 450℃ and 600℃, and calcined in hydrogen at 600℃, and the catalytic activity of these CNTs-supported catalysts were not discussed.
The experimental results show that whether the Al2O3-supported catalysts or the CNTs-supported catalysts, the catalysts calcined in hydrogen showed better toluene conversion than the catalysts calcined in air. Whether the catalysts were calcined in hydrogen or in air, the catalysts calcined at 450℃ showed the best conversion, and these calcined at 600℃ were the second, and the ones calcined at 300℃ were the lowest. During the calcination of catalyst preparation, the alumina supports interacted with cobalt, and CoAl2O4 species were produced with calcined temperature increased. The toluene conversion of cobalt catalyst is reduced as CoAl2O4 increases. On the contrast, CNTs supports don’t interacte with cobalt, and CNTs-supported catalysts show better conversion efficiency than Al2O3-supported catalysts. The different valence of cobalt for the toluene conversion was observed to follow the order : Co>Co3O4>CoO>CoAl2O4.
URI: http://hdl.handle.net/11455/5372
其他識別: U0005-0107200801080100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.