Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5377
標題: 在鎘污染土壤施用生物污泥對小白菜生長及鎘累積濃度之影響
The Effect of Biosolids Application on the Cd uptake and Chinese Cabbage Growth in the Cd-contaminated Soils
作者: 郭育真
Kuo, Yu-Chen
關鍵字: Manure;生物污泥;Cadmium;Chinese cabbage;Soil pollution;鎘;小白菜;土壤污染
出版社: 環境工程學系所
引用: 行政院環境保護署。 2003。 土壤中重金屬檢測方法-王水消化法。 NIEA S321.63B。 中華民國92年7月1日環署檢字第0920047102號公告。 行政院環境保護署網站資料。 網址www.epa.gov.tw。 林浩潭、翁愫慎及李國欽。 2002。 食品中重金屬含量及管制標準。台北市。 第13-28頁。 洪明龍。 2000。 家庭廚餘與下水污泥共同堆肥之資源化研究。國立台灣大學農業化學研究所碩士論文。 台北市。 第35、116頁。 翁仁憲、許苑培、郭孚燿及林文助。 1999。 「氣象因子對小白菜生長速率之影響」。 中華農業氣象。 第6卷, 第1期, 第7-13頁。 黃正介。 2002。 施用下水污泥對土壤重金屬含量變化與作物生長之影響。 國立屏東科技大學碩士論文。 屏東縣。 第8-114頁。 富民。 1979。「農友」。 第13卷, 第6期, 第24-25頁。 彭安及王文華。 1993。 環境生物無機化學。 初版。 淑馨出版社。 台北市。 第21-22 頁。 經濟部工業局。 1996。 工業區污水處理廠系統操作最佳化及人員培訓之研究計畫(VIII)輔導計畫。 台北市。第1-26頁。 經濟部工業局。 1997。 工業區污水處理廠系統操作最佳化及人員培訓之研究計畫(IX)輔導計畫。 台北市 經濟部工業局。 2004。污泥處理技術彙編。 初版。台北市。 第127-144頁。 經濟部工業局。 2004。土壤及地下水污染整治技術手冊-調查評估與監測。 台北市。 經濟部工業局。 2005。 金屬表面處理業土壤及地下水污染預防與整治技術手冊。 台北市。 廖本男。 2000。 添加下水道污泥之台灣土壤銅鋅的型態分佈與生物有效性。 國立台灣大學農業化學研究所碩士論文。 台北市。 第74頁。 駱尚廉。 1994。 都市污水廠污泥之再污染特性及污泥無害化之研究(I)。 台灣大學環境工程學研究所。 台北市。 第71-77 頁。 鍾仁賜、蘇育萩及林鴻淇。 1992。 盆栽水稻評估污泥、堆肥之殘餘養分生物有效性。 中國農業化學會誌。 30:386-395。 蕭炳欽。 1997。 下水污泥餅之化學處理及其重金屬特性之分析。 國立台灣大學環境工程學研究所博士論文。 台北市。 第287頁。 Anderson, M. S. 1959. Fertilizing characteristics of sewage sludge. Sewage Ind. Wastes 31: 678-682. Alloway, B. J. 1995. Heavy metals in soils. New York, John Wiley and Sons: 102. Bell, P. F., B. R. James, and R. L. Chaney. 1991. Heavy metal extraction in long-term sewage sludge and metal salt-amended soil. J. Environ. Qual. 20: 481-486. Bidwell, A. M. and R. H. Dowdy. 1987. Cadmium and zinc availability to corn following termination of sewage sludge application. J. Environ. Qual. 16: 438-442. Barbarick, K. A., J. A. Ippolito, and D, G. Westfall. 1998. Extractable trace elements in the soil profile after years of biosolids application. J. Environ. Qual. 27: 801-805. Brown, S. L., R. L. Chaney, J. S. Angle, and J. A. Ryan. 1998. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. J. Environ. Qual. 27: 1071-1078. Baveye, P., M. B. McBride, D. Bouldin, T. D. Hinesly, M. S. A. Dahdoh, and M. F. Abdel-Sabour. 1999. Mass balance and distribution of sludge-borne trace elements in a silt loam soil following long-term applications of 117 sewage sludge. Sci. Total Environ. 227: 13-28. Basta, N. T., R. Gradwohl, K. L. Snethen, and J. L. Schroder. 2001. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J. Environ. Qual. 30: 1222-1230. Chaney, R. L. 1980. Health risks associated with toxic metal in municipal sludge. p. 59-83. In G. Bitton et al. (eds.) Sludge-Health Risks of Land Application. Ann Arbor Science Publ., Ann Arbor, MI, USA. Chae, Y. M. and M. A. Tabatabai. 1986. Mineralization of nitrogen in soil amended with organic waste. J. Environ. Qual. 15: 193-198. Corey, R. B., L. D. King, C. L. Hing, D. S. Fanning, J. J. Street, and J. M. Walker. 1987. Effectsof sludge properties on accumulation of trace elements by crops. p. 25-51. In A. L. Page et al. (eds.) Land Application of Sludge. Lewis, Chelsea, MI, USA. Chaney, R. L. and J. A. Ryan. 1993. Toxic metals and toxic organic pollutants in MSW-composts: Research results on phyto-availability, bioavailability, fate, etc. p. 451-506. In H. A. Hoitink and H. M. Keener (eds.) Science and engineering of composting: Design, environmental, microbiological and utilization aspects. Renaissance Publ., Worthington, OH, USA. Chaney, R. L. 1994. Trace metal movement: Soil-plant systems and bioavailability of biosolids-applied metals. p. 27-31. In C. E. Clapp et al. (eds.) Sewage sludge: Land utilization and the environment. American Society of Agronomy, Madison, WI, USA. Chang, A. C., H. N. Hyun, and A. L. Page. 1997. Cadmium uptake for swiss chard grown on composted sewage sludge treated field plots: plateau or time bomb? J. Environ. Qual. 26: 11-19. Canet, R., F. Pomares, F. Tarazona, and M. Estela. 1998. Sequential fractionation and plant availability of heavy metals as affected by sewage sludge application to soil. Comun. Soil Sci. Plant Anal. 29: 697-716. Du Preez, L. A., W. van der Merwe, and J. S. Terblanche. 1999. Biosolids anagement at 18 waste water treatment plants in south Africa-optimisation strategies. p. 24-31. In proceeding of specialised conference on disposal and utilisation of sewage sludge: the methods and application modalities. Oct. 13-15, Athens, Greece. Epstein, E., D. B. Keane, J. J. Meisinger, and J. O. Legg. 1978. Mineralization of nitrogen from sewage sludge and sludge compost. J. Environ. Qual. 7: 217-221. Gardner, W.H. 1986. Water content. p.493-544. In A. Klute et al.(eds.). Methods of Soil Aanalysis. Part 1. Physical and Mineralogical Method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Gee, G.W., and J.W. Bauder. 1986.Particle-size analysis. p.383-412. In A. Klute et al.(eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Gardiner, D. T., R. W. Miller, B. Badamchian, A. S. Azzari, and D. R. Sisson. 1995. Effects of repeated sewage sludge application on plant accumulation of heavy metal. Agri. Ecosyst. Environ. 55: 1-6. Horowitz, A. J., Elrick, K. A. 1987. The relation of stream sediment surface area,grain size, and composition of trace element chemistry. Applied Geochemistry 2:437-451. Hormann, C. M., C. E. Clap, R. H. Dowdy, W. E. Larson, D. R. Duncomb, T. R. Halbach, and R. C. Polta. 1994. Effect of lime-cake municipal sewage sludge on corn yield, nutrient uptake, and soil analyses. p. 175-183. In C. E. Clapp et al. (eds.) Sewage Ssludge: Land Utilization and the Environment. ASA, CSSA, and SSSA, Madison, WI, USA. Harmon, M.E. and K. Lajtha. 1999. Analysis of detritus and organic horizons for mineral and organic constitutes. p.143-165. In G.P. Robertson, D.C. Coleman, C.S. Bledsoe, and P. Sollins(eds.). Standard soil methods for long-term eclological research. Oxford University Press, Inc., NY. USA. Han, F. X., W. L. Kingery, and H. M. Selim. 2000. Accumulation, redistribution, transport, and bioavailability of heavy metals in waste-amended soils. p. 145-174. In I. K. Iskandar, and M. B. Kirkham (eds.) Trace elements in soil: bioavailability, flux, and transfer. Lewis Publishers, Boca Raton, Florida, USA. Han, F. X., A. Banin, W. L. Kingery, G. B. Triplett, L. X. Zhou, S. J. Zheng, and W. X. Ding, 2003. New approach to studies of heavy metal redistribution in soil.Advances in Environmental Research. 8: 113-120. Jing, J. and T. J. Logan. 1992. Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. J. Environ. Qual. 21: 73-81. Kloke, A., D. R. Saurebeck, and H. Vetter. 1984. The contamination of plants and soils with heavy metals and transport of metals in terrestrial food chains.p.113-141. In J. O. Nriagu(ed.). Changing metal cycles and human health. Springer-Veriag, Berlin, Germany. Krebs, R., S. K. Gupta, G. Furrer, and R. Schulin. 1998. Solubility and plant uptake of metals with and without liming of sludge-amended soils. J. Environ. Qual. 27: 18-23. Kelly, J. J., M. Haggblom, and R. L. Tate III. 1999. Effects of the land application of sewage sludge on soil heavy metal concentrations and soil microbial communities. Soil Biology & Biochem. 31: 1467-1470. Keller, C., A. Kayser, A. Keller, and R. Schulin. 2000. Heavy metal uptake by agricultural crops from sewage-sludge treated soils of the Upper Swiss Rhine valley and the effect of time. p. 273-291. In I. K. Iskandar (eds.) Environmental Restoration of Metals-contaminated Soils. CRC Press, Boca Raton, FL, USA. Lock, K. and C. R. Janssen. 2003. Influence of ageing on zinc bioavailability in soils. Environ. Pollut. 126:371-374. McLean, E.O. 1982. Soil pH and lime requirement. In A.L. Page et al.(eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. p.199-224. McBride, M. B. 1995. Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective? J. Environ. Qual. 24: 5-18. Maguire, R. O., J. T. Sims, and F. J. Coale. 2000. Phosphorus solubility in biosolids-amended farm soils in the Mid-Atlantic region of the USA. J. Environ. Qual. 29: 1225-1233. McGrath, S. P., F. J. Zhao, S. J. Dunham, A. R. Crosland, and K. Coleman. 2000. Lonr-term changes in the extractability and bioavailability of zinc and cadmium after sludge application. J. Environ. Qual. 29: 875-883. Nelson, D.W. and L.E. Sommers. 1982. Total corbon, organic carbon, and organic matter. p.539-580. In A.L. Page et al.(eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Naidu, R., R. S. Kookana, M. E. Summer, R. D. Harter, and K. G. Tiller. 1997. Cadmium sorption and transport in variable charge soils: a review. J. Environ. Qual. 26:602-607. Peterson, A. E., P. E. Speth, R. B. Corvey, T. H. Wright, and P. L. Schlecht. 1994. Effect of twelve years of liquid digested sludge application on the soil phosphorus level. p. 237-247. In C. E. Clapp et al. (eds.) Sewage Sludge: Land Utilization and the Environment. ASA, CSSA, and SSSA, Madison, WI, USA. Pedreno, J. N., I. Gomez, R. Moral, and J. Mataix. 1996. Improving the agricultural value of a semi-arid soil by addition of sewage sludge and almond residue. Agri. Ecosyst. Environ. 58: 115-119. Page, A. L. and A. C. Chang. 1998. Historical account of United States and other country standards for metals applied to land in the form of municipal sewage sludge. Proceeding of the Society for Environmental Geochemistry and Health, Hong Kong, China. Pietz, R. I., R. Johnson, R. Sustich, R. Granato, P. Tata, and C. L. Hing. 1998. A 1996 sludge survey of the Association of Metropolitan Sewerage Agencies Members. Metropolitan Water Reclamation District of Greater Chicago, Report No. 98-4, Chicago. Planquart, P., G. Bonin, A. Prone, and C. Massiani. 1999. Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts: application to low metal loadings. Sci. Total Environ. 241: 161-179. Polo, M. J., R. Ordonez, and J. V. Giraldez. 1999. Copper and zinc adsorption by sewage sludge-treated soil in southern Spain. Commun. Soil Sci. Plant Anal. 30: 1063-1079. Phoades, J.K. 1982. Cation exchange capacity. P.149-158. In A.L. Page et al.(eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Raskin, I., Kumar, P.B.A.N., Dushenkoy, S. and Salt, D.E., 1994,“Bioconcentration of heavy metals by plants”, Current Opinion Biotechnology, Vol. 5, pp.285-290. Richards, B. K., J. H. Peverly, T. S. Steenhuis, and B. N. Liebowitz. 1997. Effect of processing mode on trace elements in dewatered sludge products. J. Environ. Qual. 26: 782-788. Sommers, L. E. 1977. Chemical composition of sewage sludges and analysis of their potential use as fertilizers. J. Environ. Qual. 6: 225-232. Stoepper, M. 1991. Cadmium. In E. Merian(ed.) Metals and Their Compounds in Environment. VCH New York. p.803-851. Sloan, J. J., and N. T. Basta. 1995. Remediation of acid soils by using alkaline biosolids. J. Environ. Qual. 24: 1097-1103. Sadovnikova, L., E. Otabbong, O. Iakimenko, I. Nilsson, J. Persson, and D. Orlov. 1996. Dynamic transformation of sewage sludge and farmyard manure components. 2. Copper, lead, and cadmium forms in incubated soils. Agri. Ecosyst. Environ. 58: 127-132. Schmidt, J. P. 1997. Understanding phytotoxicity thresholds for trace elements in land-applied sewage sludge. J. Environ. Qual. 26: 4-10. Scora, R. W. and A. C. Chang. 1997. Essential oil quality and heavy metal concentrations of peppermint grown on a municipal sludge-amended soil. J. Environ. Qual. 26: 975-979. Schumann, A. W. and M. E. Sumner. 1999. Plant nutrient availability from mixtures of fly ashes and biosolids. J. Environ. Qual. 28: 1651-1657. Stehouwer, R. C., A. M. Wolf, and W. T. Doty. 2000. Chemical monitoring of sewage sludge in Pennsylvania. J. Environ. Qual. 29: 1686-1695. Sumner, M. E. 2000. Beneficial use of effluents, wastes, and biosolids. Commun. Soil Sci. Plant Anal. 31: 1701-1715. Terry, R. E., D. W. Nelson, and L. E. Sommers. 1979. Carbon cycling during sewage sludge decomposition in soils. Soil Sci. Soc. Am. J. 43: 494-499. USEPA. 1989. Standards for the disposal of sewage sludge: proposed rule 40 CFR parts 257 &503. Federal Register, Washington, D.C., USA. USEPA. 1990. National Sewage Sludge Survey: Availability of information and data, and anticipated impacts on proposed regulations. Federal Register, Washington, D.C., USA. USEPA. 1994. A plain English guide to EPA part 503 biosolids rule. Office of Wastewater Management, EPA/832/R-93/003, Washington, D.C., USA. USEPA. 1999. Biosolids generation, use, and disposal in the United States. Municipal and Industrial Solid Waste Division, Office of Solid Waste, EPA 530-R-99-009, Washington, D.C., USA. Vlamis, J., D. E. Williams, J. E. Corey, A. L. Page, and T. J. Ganje. 1985. Zinc and cadmium uptake by barley in field plots fertilized seven years with urban and suburban sludge. Soil Sci. 139: 81-87. Vig, K., M. Megharaj, N. Sethunatnan, and R. Naidu. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv. Environ. Res. 8:121-135. WHO. 1989. Evaluation of certain food additives and contaminants. Thirty-third report of the joint FAO/WHO expert committee on food additives, WHO technical series, No.837. Geneva. WHO. 1996. Trace elements in human nutrition and health. WHO, Geneva. Wong, J. W. C., G. X. Li, and M. H. Wong. 1996. The growth of Brassica chinensis in heavy metal contaminated sewage sludge compost from Hong Kong. Bioresource Technol. 58: 309-313. Wang, M. J. 1997. Land application of sewage sludge in China. Sci. Total Environ. 197: 149-160. Walter, I. and G. Cuevas. 1999. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. Sci. Total Environ. 226: 113-119. Wong, J. W. C., K. M. Lai, D. S. Su, and M. Fang. 2001. Availability of heavy metals for Brassica chinensis grown in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water Air & Soil Pollut. 128: 339-353.
摘要: 
台灣地區由於工商業的快速發展,有許多工廠分佈於農業區附近,早期因環保觀念不足,大部分的工廠並無污染防治設備且任意排放污染物,造成農田土壤污染。台灣地區每人每日所排放的水肥約1.0-1.3公升,而目前仍在運轉的水肥廠並不多,但經水肥廠處理後所產生之污泥,並無明確的處置方法。經處理產生後之生物污泥富含有機質、氮和磷等植物生長所需之養分,未來可朝向將污泥資源化再利用之土地施用之方式進行。本論文進行盆栽試驗,將小白菜種植於不同濃度之鎘污染土壤中,並施用不同比例之民生污泥,以評估添加污泥對小白菜生長及累積鎘之影響,試驗之結果可做為未來污泥土壤施用之參考。
本試驗在添加污泥效應結論如下:(1)人為施加污泥會促進小白菜地上部植體生長,但人為施加污泥量若大於 10%則會減緩小白菜地上部植體生長。(2)施加污泥明顯增加小白菜地上部植體鎘濃度,但人為施加污泥量若大於 10%則無明顯差異。(3)在小白菜地上部植體鎳吸收方面,小白菜地上部鎳濃度會隨著污泥施用量而增加。(4)在對鎘總移除量方面,人為施加 5%污泥會使鎘總移除量增加,但在人為施加 10%污泥部分,則降低鎘總移除量,此趨勢與植物生長之影響相同。(5)在對BCF(生物濃縮因子)方面,添加污泥對BCF值有增加之趨勢。
本試驗於鎘污染土壤結論如下:(1)鎘污染土壤中的鎘含量在試驗濃度的條件下對小白菜生長影響不大,由此可知小白菜對重金屬鎘有相當之耐受力。(2)小白菜地上部植體鎘濃度會隨著配置鎘污染土壤濃度增加而增加。(3)鎘總移除量會隨著鎘污染土壤中鎘濃度的增加,鎘的總移除量也隨之上升。

In the industrization blooming period in Taiwan, many industrial plants were built around the agricultural region. Due to lack of eco-awareness, at that time most of the plants were not equipped with hazardous waste management facility. therefore, soil and groundwater are contaminated by heavy metals and organic chemicals.
About 1 to 1.3 liter of raw sewage is produced per capita per day in Taiwan. After processed, the manure is rich of organism, nitrogen, and phosphorus, which are necessary for the growth of plants. A series of pot experiment were conducted in this research. Different ratios of manure were applied on the Chinese cabbages that grew in the soil with different concentrations of Cadmium. Growth of Chinese cabbages and the variation of Cadmium concentrations in the soil were monitored during these experiments.
Following phenomena are observed from the experiments of applying different ratios of manure into Cadmium-contaminated and uncontaminated soils: (1) Growth of the above-ground fraction of Chinese cabbage is accelerated by the application of manure less than 10% ratio. If applying manure exceeds 10%, the growth is decelerated. (2) The Cadmium concentration in the above-ground fraction of Chinese cabbage is increased by the application of manure less than 10% ratio. If applying manure exceeds 10%, the variation of concentration becomes insignificant. (3) The Nickel concentration in the above-ground fraction of Chinese cabbage is increased with the amount of manure applied. (4) The reduction of Cadmium amount in the soil is increased when applying 5% ratio of manure. When the ratio of manure applied is higher than 10%, the reduction effect becomes insignificant. (5) BCF value of Cadmium is increased with the amount of manure applied.
Following phenomena are observed from the experiments of planting in the soils with different concentrations of Cadmium: (1) The effect of Cadmium concentration in the soil is observed to be small on the growth of Chinese cabbage. (2) The Cadmium concentration in the above-ground fraction of Chinese cabbage is increased with an increase in Cadmium concentration in the soil. The Cadmium concentration in the soil has been reduced after planting Chinese cabbage. (3) The reduction of total amount of Cadmium is increased for the soil with an higher initial Cadmium concentration.
URI: http://hdl.handle.net/11455/5377
其他識別: U0005-0108200808563300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.