Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5389
標題: 活性碳吸附結合過硫酸鹽氧化三氯乙烯污染物之可行性評估
Evaluation of matrices for activated carbon adsorption and persulfate oxidation of trichloroethylene
作者: 石武航
Shin, Wu-Hang
關鍵字: In situ chemical oxidation;現址化學氧化法;Persulfate;Activated carbon;Trichloethylene;過硫酸鹽;活性碳;三氯乙烯
出版社: 環境工程學系所
引用: 王仁澤, 1993. 環境與工業毒物學. 高立圖書有限公司, 台北市. 行政院環保署, 2008a. 土壤及地下水污染整治基金管理委員會. http://sgw.epa.gov.tw/public/ 行政院環保署, 2008b. 土壤及地下水污染整治基金管理委員會/土基會簡介/土污基金介紹. http://sgw.epa.gov.tw/public/0102.asp 行政院環保署, 2008c. 毒性化學物質災害防救查詢系統. http://www.eric.org.tw/ 金相燦, 程振華, 徐南泥, 李海生, 1998. 環境毒性有機污染物化學. 淑馨出版社, 台北市. 翁瑞裕, 2001. 紅外線光譜分析法. 高立圖書有限公司, 台北市. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 23, 13-20. 經濟部工業局, 2005. 印刷電路板業土壤及地下水污染預防與整治技術手冊. 劉俊廷, 2007. 過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究. 國立成功大學環境工程研究所碩士論文, 台南市. 盧至人, 1997. 地下水的污染整治. 國立編譯館, 台北市. Alvarez, P.M., Beltran, F.J., Gomez-Serrano, V., Jaramillo, J., Rodriguez, E.M., 2004. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research 38, 2155-2165. Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53, 51-59. Behrman, E.J., 1995. Ammonium Peroxydisulfate In: Encyclopedia of reagents for organic synthesis, Paquette L.A. (ed). John Wiley & Sons, New York, NY Bhummasobhana, A., Scamehorn, J.F., Osuwan, S., Harwell, J.H., Baramee, S., 1996. Surfactant-Enhanced Carbon Regeneration in Liquid-Phase Application. Separation Science and Technology 31, 629 - 641. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., 1940. On a theory of the van der waals adsorption of gases. Journal of the American Chemical Society 62, 1723-1732. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution. Journal of Physical Chemistry Reference Data 17, 513-531. Cao, S., Chen, G., Hu, X., Yue, P.L., 2003. Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts. Catalysis Today 88, 37-47. Ferro-Garcia, M.A., Utrera-Hidalgo, E., Rivera-Utrilla, J., Moreno-Castilla, C., Joly, J.P., 1993. Regeneration of activated carbons exhausted with chlorophenols. Carbon 31, 857-863. FMC-Corporation, 2001. Persulfate Technical Information. http://www.fmcchemicals.com/TechDataSheetsMSDS/Persulfates/tabid/1446/Default.aspx. Georgi, A., Kopinke, F.-D., 2005. Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental 58, 9-18. Ho, Y.-S., 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials 136, 681-689. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. Huang, H.-H., Lu, M.-C., Chen, J.-N., Lee, C.-T., 2003. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere 51, 935-943. Huling, S.G., Jones, P.K., Ela, W.P., Arnold, R.G., 2005. Fenton-driven chemical regeneration of MTBE-spent GAC. Water Research 39, 2145-2153. ITRC, 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. 2nd Edition. Washington, D.C. ITRC: In Situ Chemical Oxidation Team. Juntgen, H., 1977. New applications for carbonaceous adsorbents. Carbon 15, 273-283. Kimura, M., Miyamoto, I., 1994. Discovery of the activated-carbon radical AC+ and the novel oxidation-reactions comprising the AC/AC+ cycle as a catalyst in an aqueous solution. Bulletin of the Chemical Society of Japan 67, 2357-2360. Kolthoff, I.M., Miller, I.K., 1951. The chemistry of persulfate. I. The kinetics and mechanism ofthe decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society 73, 3055-3059. Kommineni, S., Ela, W.P., Arnold, R.G., Huling, S.G., Hester, B.J., Betterton, E.A., 2003. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science 20, 361-373. Laila B Khalil, Girgis, B.S., Tawfik, T.A., 2001. Decomposition of H2O2 on activated carbon obtained from olive stones. Journal of Chemical Technology and Biotechnology 76, 1132-1140. Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Lipczynska-Kochany, E., Sprah, G., Harms, S., 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30, 9-20. Minisci, Citterio, 1983. Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Accounts of Chemical Research 16, 27-32. Mohd Din, A.T., Hameed, B.H., Ahmad, A.L., 2008. Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials In Press, Corrected Proof. DOI:10.1016/j.jhazmat.2008.05.009 Moreno-Castilla, C., Ferro-Garcia, M.A., Joly, J.P., Bautista-Toledo, I., Carrasco-Marin, F., Rivera-Utrilla, J., 1995. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11, 4386-4392. Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995-2001. Nakano, Y., Hua, L.Q., Nishijima, W., Shoto, E., Okada, M., 2000. Biodegradation of trichloroethylene (TCE) adsorbed on granular activated carbon (GAC). Water Research 34, 4139-4142. Noh, J.S., Schwarz, J.A., 1990. Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28, 675-682. Okawa, K., Suzuki, K., Takeshita, T., Nakano, K., 2007. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Water Research 41, 2095. Parker, G.R., 1995. Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents. Adsorption 1, 113-132. Quinlivan, P.A., Li, L., Knappe, D.R.U., 2005. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673. Rael, J., Shelton, S., Dayaye, R., 1995. Permeable barriers to remove benzene: Candidate media evaluation. Journal of Environmental Engineering 121, 411-415. Rodriguez-Reinoso, F., 1998. The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175. Ruthven, D.M., 1984. Principles of Adsorption and Adsorption Processes. John Wiley & Sons, New York, NY. Salame, I.I., Bandosz, T.J., 1999. Study of water adsorption on activated carbons with different degrees of surface oxidation. Journal of Colloid and Interface Science 210, 367-374. Sheintuch, M., Matatov-Meytal, Y.I., 1999. Comparison of catalytic processes with other regeneration methods of activated carbon. Catalysis Today 53, 73-80. Shin, S., Jang, J., Yoon, S.H., Mochida, I., 1997. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon 35, 1739-1743. Stumm, W., 1992. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Sons, New York, NY. Suffet, I.H., McGuire, M.J., 1980. Activated Carbon Adsorption of Organics from the Aqueous Phase . Ann Arbor Science, Ann Arbor, Michigan. Sutikno, T., Himmelstein, K.J., 1983. Desorption of phenol from activated carbon by solvent regeneration. Industrial & Engineering Chemistry Fundamentals 22, 420-425. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 14, 145-156. Toledo, L.C., Silva, A.C.B., Augusti, R., Lago, R.M., 2003. Application of Fenton''s reagent to regenerate activated carbon saturated with organochloro compounds. Chemosphere 50, 1049-1054. USEPA, 1998a. National primary drinking water regulations, technical fact sheet on trichloroethylene and tetrachloroethylene. http://www.epa.gov/OGWDW. USEPA, 1998b. Permeable reactive barrier technologies for contaminant remediation. Office of Research and Development Washington DC 20460 EPA/600/R-98/125. . USEPA, 1999. Field applications of in situ remediation technologies: permeable reactive barriers. EPA 542-R-99-002. West, C.C., Harwell, J.H., 1992. Surfactants and subsurface remediation. Environmental Science & Technology 26, 2324-2330.
摘要: 
三氯乙烯(trichloroethylene,TCE)為國內工業上常使用之氯化有機溶劑,其易揮發且比水重非水相之特性,意外洩漏易進入深層土壤中,對土壤及地下水層形成長久之污染源。透水性反應牆(permeable reactive barriers, PRBs)為反應介質組成之屏障,目的為防止污染物隨地下水流而擴散。填充介質根據反應性分為不同型態。其中活性碳為廣泛使用之填充介質,藉由吸附作用濃縮水體之污染物。然而其吸附容量隨時間累積終達飽和,需置換填充材質。若能直接於地表下進行活性碳再生並降解脫附出之污染物,可減少開挖及處理吸附飽和活性碳之費用。現址化學氧化法(in situ chemical oxidation, ISCO)為不移動污染土壤或污染物將氧化劑導入地表下之整治技術。過硫酸鹽為應用於現址化學整治技術之氧化劑,可藉由熱及化學活化方式產生自由基降解污染物。因活性碳被證實可催化過氧化氫產生自由基,推論此反應亦適用過硫酸鹽,故本研究嘗試結合活性碳吸附與過硫酸鹽氧化能力處理TCE。
實驗結果顯示過硫酸鹽與活性碳反應,過硫酸鹽降解趨勢符合一階反應動力,且活性碳劑量為過硫酸鹽降解之影響因子。氧化劑接觸後之活性碳表面酸性官能基增加因而造成表面酸度上升、比表面積及等電位點降低等現象,並造成活性碳吸附能力下降。活性碳存在下過硫酸鹽氧化三氯乙烯實驗顯示於TCE與活性碳共存下過硫酸鹽降解減緩但仍遵循假一階反應動力,並由TCE隨時間固液相分布情形推論氧化反應發生於液相且有副產物之生成。過硫酸鹽再生活性碳造成吸附相之TCE脱附並可能產生TCE之降解,然而TCE之礦化程度相較於以亞鐵活化過硫酸鹽再生為不顯著,亞鐵活化再生機制則可同時氧化液相及固相污染物。

Chlorinated solvents such as trichloroethylene (TCE) have been widely used in industry. TCE is a dense non aqueous phase liquid and volatile organic compound. When TCE is accidently released in subsurface environment, the natural characteristics of TCE denotes that it could cause extensive groundwater contamination. Among a variety of subsurface remediation techniques, a permeable reactive barrier (PRB) is a permeable zone containing or creating a reactive treatment area oriented to intercept and remediate a contaminant plume. The reactive media such as activated carbon is commonly selected to absorb the pollutants from the groundwater. However, if the activated carbon reaches its adsorption capability, the PRB needs to be rebuilt with new materials or the carbon requires regeneration. Alternatively, in situ chemical oxidation (ISCO) is a remediation technology used to aggressively clean up contaminated area, mostly applicable to a highly concentrated contamination. The persulfate anion is an ISCO oxidant, which can be thermally or chemically activated to generate sulfate radicals for the destruction of organic contaminants. The objectives of this study were to evaluate the potential of the activated carbon PRB in conjunction with ISCO in treating TCE contamination.
The results reveal that persulfate degradation in the presence of activated carbon follows a pseudo-first-order degradation kinetic model and the quantity of carbons is a rate-limiting factor. The surface of activated carbon after contacting with persulfate exhibits significant changes including the increase of surface acidity, the decrease of specific surface area and pH of the point of zero charge and also the reduction of adsorption capacity. Furthermore, persulfate degradation in the presence of TCE and activated carbon appears even slower. The TCE degradation mainly occurred in aqueous phase in the persulfate/activated carbon system. Moreover, when persulfate and iron activated persulfate are used to regenerate activated carbon, the results demonstrate that persulfate oxidation can induce desorption of TCE from carbon surface while iron activated persulfate can simultaneously undergo desorption and oxidization of TCE.
URI: http://hdl.handle.net/11455/5389
其他識別: U0005-0608200811301200
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.