Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5395
標題: 活化程序對過硫酸鹽氧化苯之效率探討
Effects of activation processes on persulfate oxidation of benzene
作者: 郭怡婷
Kuo, Yi-Ting
關鍵字: BTEX;BTEX;in situ chemical oxidation;persulfate;sulfate radical;citric acid;現址化學氧化法;過硫酸鹽;硫酸根自由基;檸檬酸
出版社: 環境工程學系所
引用: 中文參考文獻 台灣中油股份有限公司,2008. 台灣中油全球資訊網/石油教室。http://www.cpc.com.tw/big5/content/index01.asp?sno=186&pno=108。 行政院環境保護署,2009. 土壤及地下水污染整治網/場址資訊。http://sgw.epa.gov.tw/public/050304.asp。 行政院環境保護署,2009. 地下水污染管制標準。 行政院環境保護署,2008. 飲用水水質標準。 林財富、洪旭文,1999. 受污染場址現地化學處理方法介紹,工業污染防治,經濟部工業局,72,178-200。 林財富、鄭仲愷,現地化學氧化技術之發展與案例分析,第八屆土壤及地下水污染整治研討會論文集,127-140,台北市,2003年8月25日。 林財富、林佩雲、林競京、習良孝、潘時正、吳雪蘋、沈義富,現地化學氧化技術之限制與發展,第九屆土壤及地下水污染整治研討會論文集,61-74,台北市,2005年6月21日。 吳春生,2002. 以生物曝氣法整治受地下儲槽洩漏之石化系有機污染物模場研究,國立中山大學環境工程研究所碩士論文。 勞工委員會安全衛生處,2008. 物質安全資料表。http://www.iosh.gov.tw/msds.htm。 經濟部工業局,2005. 印刷電路板業土壤及地下水污染預防與整治技術手冊。 經濟部能源局,2008. 經濟部能源局/石油/統計資訊。 http://www.moeaec.gov.tw/Statistics/oil/StatisticsOil.aspx。 黃武良,1999. 石油-大自然孕育千萬年的珍藏, 地球科學園地。http://hk.geocities.com/wh_tsui/cf.htm。 楊士賢,2003. 水中MTBE氧化特性之研究,國立成功大學環境工程學系碩士論文。 盧至人,2002. 含氯有機溶劑(DNAPL)污染的現地生物復育技術,環保月刊,第2卷,第3期,79-86。 英文參考文獻 Brown, R.A., Robinson, D., 2004. Response to naturally occurring organic material: Permanganate versus persulfate. The Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, California, May 23-26. Brown, R.A., Robinson, D., Skladany, G., Loeper, J., 2003. Response to naturally occurring organic material: Permanganate versus persulfate. Proceedings of ConSoil, 2003-8th International FZK/TNO conference on contaminated soil, 1692-1698, May 12-16, Gent, Belgium. Charles, J. Newell., Steven, D. Acree., Randall, R. Ross., and Scott, G.H.,1995. U.S.EPA. Ground water Issue:Light Nonaqueous Phase Liquids, EPA/540/s-95/500. Crimi, M.L., Taylor, J., 2007. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants, Soil & Sediment Contamination, 16, 29-45. FMC, Corporation., 2001. Persulfate Technical Information, Philadelphia, PA USA. Fujii, M., Rose, A.L., Waite, T.D., Omura, T., 2008. Effect of divalent cations on the kinetics of Fe(III) complelxation by organic ligands in natural waters, Geochim. Cosmochim. Acta 72 , 1335–1349. Huang, K.C., Couttenye, R.A., Hoag, G..E., 2002. Kinetics of Heat-Assisted Persulfate Oxidation of Methyl tert-Butyl Ether(MTBE), Chemoshpere, 49, 413-420. Huang, K.C., Zhao Z., Hoag, G.E., Dahmani, A., Block, P.A, 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation, Chemosphere, 61, 551-560. Huling, S.G., 2002. In-Situ Fenton Oxidation:A Critical Analysis, Teleconference of In situ Treatment of Groundwater Contaminated With Non-Aqueous Phase Liquids, Dec 10-11, 2002, Chicago, IL. http://www.clu-in.org/. International Technology and Regllatory Cooperation(ITRC), 2005. Technical and Regulatory Guidance for In-situ Chemical Oxidation of Contaminated Soil and Groundwater. 2nd Ed, Washington, D.C. Kelly K.L., Marlry, M.C., Sperry, K.L., 2002. In-site Chemical Oxidation on MTBE., proceedings of 2002 joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, July 21-24, Niagara Falls, Ontario, Canada. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55, 1213-1223. Liang, C., Bruell, C.L., Marley, M.C., Sperry, K.L., 2004b, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55, 1225-1233 Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in aqueous systems and soil slurries, Soil and Sediment Contamination, 12, 207-228. Liang, C., Huang, C. F., Chen, Y.J., 2008. Potential for activated persulfate degradation of BTEX contamination, Water Research, 42, 4091-4100. Liang, C., Huang, C.F., Mohanty, N., Lu, C.J., Kurakalva, R.M., 2007. Hydroxypropyl-beta-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Industrial & Engineering Chemistry Research 46, 6466-6479. Liesbet van Cauwenberghe , Diane S Roote, P.G, 1998. In Situ bioremediation (Technology overview report), Ground-Water Remediation Technologies Analysis Center. Schwarzenbach, R.P., Westall, J., 1981. Transport of nonpolar organic compounds from surface water to groundwater, Environmental Science and Technolgy, 15, 1360-1367. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and Practices of in situ Chemical Oxidation using Permanganate., Battelle Press, Ohio, USA. USEPA.(U.S. Environmental Protection Agency), 1989. http://www.epa.gov/superfund/sites/npl/npl.htm. USEPA.(U.S. Environmental Protection Agency), 2001a. A citizen’s guide to pump and treat, EPA 542-F-01-025. USEPA.(U.S. Environmental Protection Agency), 2001b, A citizen’s guide to Chemical Oxidation, EPA 542-F-01-013. USEPA.(U.S. Environmental Protection Agency), 2004. How To Evaluate Alternative Cleanup Technologies For Underground Storage Tank Sites, EPA 510-R-04-002. U.S. Naval Facilities Engineering Service Center, 2002. Surfactant- Enhanced Aquifer Remediation (SEAR) Design Manual, NFESC Technical Report TR-2206-ENV.
摘要: 
目前國內地下儲油槽洩漏問題日益嚴重,油品成分中苯、甲苯、乙苯及二甲苯(簡稱BTEX)所造成之土壤及地下水污染為大眾所關切之環境議題。現址化學氧化整治法在汚染場址的適用範圍相當廣泛,此法不需開挖受污染的土壤,即可進行土壤及地下水整治,而在氧化劑的使用上,過硫酸鹽為近年逐漸發展之氧化劑,過硫酸鹽經活化程序可產生較強之硫酸根自由基氧化劑。因此,本研究目標為探討不同活化程序對於過硫酸鹽氧化水溶相苯的降解效率。
本實驗於室溫下活化過硫酸鹽,得知此程序對於水溶相苯仍有降解效果,唯所需反應時間較長,去除率可隨過硫酸鹽濃度提高而提高。而添加二價鐵以活化過硫酸鹽雖可加速反應之進行,但如以單次注入活化劑之方式,降解反應將無法有效地持續進行,僅能造成部分的苯降解。若藉由加藥程序的改變或適量檸檬酸螯合劑的添加,則可有效控制二價鐵在水溶液中之濃度,避免其與硫酸根自由基反應而抑制硫酸根自由基與污染物之反應。在反應時間60分鐘內,苯降解之程度皆能由60%~80%,提升至90%以上,甚至完全降解。比較不同活化程序之效能,得知藉由加藥程序的改變或適量檸檬酸的添加,可使氧化劑或活化劑用量得到較為有效之控制或較佳效能。

Leaking underground storage tanks are a serious threat and the associated soil and groundwater pollution is a serious problem in Taiwan. Gasoline hydrocarbons including benzene, toluene, ethylbenzene, and xylene (BTEX) can create a hazard to public health. In situ chemical oxidation (ISCO) uses oxidants to destroy pollution in soil and groundwater. This technique does not involve digging up polluted soil and the oxidant undergoes oxidation to convert harmful chemicals into harmless compounds. The most recent ISCO oxidant to clean up pollution is persulfate anion, which can be activated to produce a more aggressive oxidant know as sulfate radicals. Therefore, this present study explored effects of various activation processes on the efficiency of persulfate oxidation of benzene in an aqueous phase.
The results indicated that benzene was effectively oxidized by persulfate at ambient temperature with extended reaction time (days to months). Also, the benzene degradation rate increased with increases in persulfate concentrations. Ferrous ion activated persulfate process can accelerate the degradation of benzene (within minutes), but benzene was only partially degraded. However, when ferrous ion was gradually added, instead of a single dose, benzene can be completely degraded. The use of citric acid chelated ferrous can also enhance the ferrous ion activation process in degrading benzene. It is speculated that the more complete and effective benzene degradation was due to successful regulation of ferrous ion, via the way of dosing ferrous ion and the use of chelating agent.
URI: http://hdl.handle.net/11455/5395
其他識別: U0005-1002200913193400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.