Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5399
DC FieldValueLanguage
dc.contributor吳志超zh_TW
dc.contributor張禎祐zh_TW
dc.contributor梁振儒zh_TW
dc.contributor.advisor謝永旭zh_TW
dc.contributor.author汪昀昇zh_TW
dc.contributor.authorWang, Yun-Shengen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:34:43Z-
dc.date.available2014-06-06T06:34:43Z-
dc.identifierU0005-1006200811302000zh_TW
dc.identifier.citation申洋文、車雲霞(1998)“無機化學叢書,第八卷,鈦分類”科學出版社,北京。 林榮良(2002)“TiO2光催化原理和應用例子”Chemistry (The Chinese Chem. SOC., Taipei),60(3),457-461。 胡振國譯(1989)“半導體元件-物理與技術”,全華圖書公司。 洪雲傑(2005)“以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究”,碩士論文,國立中興大學環境工程學系。 陳松興(1978)“異相催化反應”,徐氏基金會。 許招墉(1992)“光電工學概論”,全華圖書公司。 黃文魁、鄭光煒、王偉洪、陳怡甄(2004) “亞太奈米光觸媒之技術發展趨勢與應用市場”,工業技術研究院。 盧明俊、阮國棟、陳重男(1991)“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集。 謝芳生、劉濱達譯(1986)“微電子學”,東華書局。 Aegerter, M.A. (1989). "Sol-gel: science and technology." World Scientific, New Jersey. An, T., Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z. (2005). "Hotoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor." Applied Catalysis A: General, 279, 247-256. Bideau, M., Claudel, B., Dubien, C., Faure, L., and Kazouan, H. (1995). "On the immobilization of titanium dioxide in the photocatalytic oxidation of spent waters." Journal of Photochemistry and Photobiology A: Chemistry, 91, 137-144. Byren, J. A. and Eggins, B. R. (1998). "Photoelectrochemistry of oxalate on particulate TiO2 electrode." Journal of Electroanalytical Chemistry, 457, 61-72. Bhattacharya, A. K., Pyke, D. R., Reynolds, R.,Walker, G. C. and Werrett, C. R.(1997). "The use of O1s charge referenceing for the X-ray photoelectron spectroscopy of Al/Si, Al/Ti, Al/Zr mixed oxide." Journal of Materials Science Letters, 16, 1-3. Brinker, C. J. and Scherer, G. W. (1990). "Sol gel science." Academic Press. Bulent E. and Yoldas (1986). "Hydrolysis of titanium alkoxide and effect of hydrolytic polycondensation parameters." Journal of Materials Science, 21, 1087-1092. Carp, O., Huisman, C. L., and Reller, A. (2004). "Photoinduced reactivity of titanium dioxide." Progress in Solid State Chemistry, 32, 33-177. Chen, H. W., Ku, Y., and Kuo, Y. L. (2007). "Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis." Water Research, In Press, Corrected Proof. Childs, L. P. and Ollis, D. F. (1980). "Is photocatalysis catalytic?" Journal of Catalysis, 66, 383-390. Choi, W., Termin, A., and Hoffmann, M. R. (1994). "The role of metal ion dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Tecombination Dynamics." American Chemical Society, 98, 13669-13679. Dean, J. A., ed. (1973). "Lange''s handbook of chemistry, Ilth ed. " Mcgraw-Hill, New York, 3-123. Doeuff, S., Henry, M., Sanchez, C. and Livage, J. (1987), "Hydrrolysis of titanium alkoxide: Modification of the molecular precursor by acetic acid." Journal of non-crystalline solids, 89, 206-216. Doede, C. M. and Walker, C. A. (1955). "Photochemical engineering." Chemical Engineering, 62(2), 159-178. Egerton, T. A., Janus, M., and Morawski, A. W. (2006). "New TiO2/C sol-gel electrodes for photoelectrocatalytic degradation of sodium oxalate." Chemosphere, 63, 1203-1208. Finklea, H. O. (1988). "Semiconductor electrode." Elsevier Press, New York. Fox, M. A. and Dulay, M. T. (1993). "Heterogeneous photocatalysis." Chemical Reviews, 93, 341-350. Gratzel, M. (1983). "Energy: resources through photochemistry and catalysis." Acadamic Press lnc. Gotic, M., Ivanda, M., Seculic, A., Music, S., Popovic, S., Turkovic, A. and Furic, K. (1996), "Microstructure of nanosized TiO2 obtained by sol-gel synthesis." Materials Letters, 28, 225-229. Gratzel, M., Serpone, N. and Pelizzetti, E., Ed. (1989). "Colloidal semiconductor-in photocatalysis." John Wiley & Sons, New York. He, C., Li, X. Z., Graham, N., and Wang, Y. (2006). "Preparation of TiO2/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application." Applied Catalysis A : General, 305, 54-63. Hague, D. C. and Mayo, M. J. (1994). "Controlling crystallinity during processing of nanocrystalline titania." Journal of the American Ceramic Society, 77, 1957-1960. Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann (1995). "Environmental applications of semiconductor photocatalysis." Chemical Reviews, 95, 69-75. Habibi, M. H., and Talebian, N. (2007). "Photocatalytic degradation of an azo dye X6G in water : A comparative study using nanostructured Indium tin oxide and titanium oxide thin films." Dyes and Pigments, 73, 186-194. Habibi, M. H., Talebian, N., and Choi, J. (2006). "Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation." Thin Solid Films, 515, 1461-1469. Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. (2001). "Preparation of stable anatase-type TiO2 and its photocatalytic performance." International Journal of Inorganic Materials, 3, 809–811. Jorge, S. M. A., J. J. d. Sene, and A. d. O. Florentino (2005). "Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode." Journal of Photochemistry and photobiology A : Chemistry, 174, 71-75. Kamat, P. V. (1993). "Photochemistry on nonreactive and reactive (semiconductor) surfaces." Chemical Reviews, 93, 267-269. Kumar, K. P., Keizer, K., Burggraaf, A. J., Okubo, T., Nagamoto, H. and Morooka, S. (1992). "Densification of nanostructured titania assisted by aphase-transformation," Nature, 358, 48-51. Legan, R. W. (1982). "Ultraviolet light takes on CPI roles." Chemical Engineering, January, 89, 95-100. Lu, A., Li, Y., Lv, M., Wang, C., Yang, L., Liu, Juan., Wang, Y., Wong, K. K., and Wong, P. K. (2007). "Photocatalytic oxidation of methyl orange by natural V-bearing rutile under visible light." Solar Energy Materials and Solar Cells, 91, 1849-1855. Li, J., L. Li, L. Zheng, Y. Xian, and L. Jin (2006). "Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method." Electrochimica Acta, 51, 4942-4949. Lewis, N. S.. Rosenbluth, M. L., Serpone, N. and Pelizzetti, E., Ed. (1989). "Theory of semiconductor materials-in photocatalysis." John Wiley & Sons, New York. Li, X. Z., Zhao, B. X., and Wang, P. (2007). "Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process." Journal of Hazardous Materials, 147, 281-287. Mohamed, M. M., Baoumy, W. A., Khairy, M., and Mousa, M. A. (2008). "Structural features and photocatalytic behaviour of titania and titania supported vanadia synthesized by polyol functionalized materials." Microporous and Miesoporous Materials, 109, 445-457. Maron, S. H. and Lando, J. B. (1974). "Fundamentals of Physical Chemistry." Macmillan Publishing Co. Inc., New York, 720. Moulder, J. F., Stickle, W. f., Sobol, P. E., and Bomben, K. D. (1992). "Handbool of X-ray Photoelectron Spectroscopy." Perkin-Elmer Corporation Physical Electronics Division. Ma, Y., Guoa, L., Yan, W., and Liu, H. (2001). "Photocatalytic activity of TiO2 film grown on different substrates." Chemosphere, 44, 1087-1092. Ollis, D. F., Pelizzetti, E. and Serpone, N. (1991). "Destruction of water contaminants." Environmental Science & Technology, 25(9), 1523-1529. Okamoto, K., Yasunori, Y., Hirok, T., Masashi, T., and Akira, T. (1985). "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder." Bulletin of the Chemical Society of Japan, 58, 2015-2022. Prengle, H. W. and Mauk, C. E. (1978). "New technology: ozone/UV chemical oxidation waste water process for metal complexes, organic species and disinfection." AIChE Symposium Series, 74(178), 228. Stumm, W. (1992). "Chemstry of the solid-water interface." John Wiley & Sons, New York. Suri, R. P. S., Liu, J., Hand, D. W., Crittenden, J. C., Perram, D. L. and Mulins, M. E. (1993). "Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water.”, Water Environment Research, 65(5), 665-673. Sakata, T., Kawai, T., Gratzel, M., Ed. (1983). "Photosynthesis and photocatalysis with semiconductor powder-in energy resources through photochemistry and catalysis." Academic Press, New York. Srinivasan, S. S., Wade, J., Stefanakos, E. K., and Goswami, Y. (2006). "Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2." Journal of Alloys and Compounds, 424(1-2), 322-326. Turro, N. J. (1965). "Molecular photochemistry." Columbia University, New York, 1. Turner, J. C. R. (1981). "An introduction to the theory of catalytic reactors." Catalysis Science and Technology, 1, 43-86. Texier, I., Ouazzani, J., Delaire, J. and Giannotti, C. (1999). "Study of the Mechanisms of the photodegradation of atrazine in the presence of two photocatalysts: TiO2 and Na4W10O32." Tetrahedron, 55(11), 3401-3412. Uzunova, M., Kostadinov, M., Georgieva, J., Dushkin, C., Todorovsky, D., Philippidis, N., Poulios, I., and Sotiropoulos, S. (2007). "Photoelectrochemical characterisation and photocatalytic activity of composite La2O3-TiO2 coatings on stainless steel." Applied Catalysis B: Environmental, 73, 23-33. Wu, J. C. S. and Chen, C. H. (2004). "A visible-light response Vanadium-doped titania nanocatalyst by sol-gel method." Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 509-515. Waldner, G., Gómez, R., and Neumann-Spallart, M. (2006). "Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase : Case of oxalic acid." Electrochimica Acta, 52, 2634-2639. Waldner, G., M. Pourmodjib, R. Bauer, and M. Neumann-Spallart (2002). "Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes." Chemosphere, 50, 989-998. Wang, J., Uma, S. and Klabunde, K. J. (2004). "Visible light photocatalysis in transition metal incorporated titania-silica aerogels." Applied Catalysis B: Environmental, 48(2), 151-154. Xie, Y. and Yuan, C. (2004). "Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation." Applied Surface Science, 221(1-4), 17-24. Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., and Anpo, M. (2003). "Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2." Catalysis Today, 84(3-4), 191-196. Yang, J., Mei, S. and Rerreira, J. M. F. (2000). "Hydrothermal synthesis of nanosized titania powder: influence of peptization and peptizing agents on the crystalline phases and phase transition." Journal of the American Ceramic Society, 83(6), 1361-1368. Zepp, R. G. (1988). "Factors affecting the photochemical treatment of hazardous waste." Environmental Science & Technology, 22(3), 256-257. Zafiriou, O. C., Dubien, J. J., Zepp, R. G. and Zika, R. G. (1984). "Photochemistry of natural waters." Environmental Science & Technology, 18(12), 358-371. Zhou, J., Takeuchi, M., Ray, A. K., Anpo, M., and Zhao, X. S. (2007). "Enhancement of photocatalytic activity of P25 TiO2 by Vanadium-ion implantation under visible light irradiation." Journal of Colloid and Interface Science, In Press, Corrected Proof.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5399-
dc.description.abstract本研究嘗試以過渡金屬釩(Vanadium)對二氧化鈦光觸媒進行改質,利用溶膠凝膠法製備TiO2光觸媒及V-TiO2光觸媒,再經由含浸方式將光觸媒披覆於氧化銦錫導電玻璃(Indium-Tin Oxide)上,製備成電極形式;其中過渡金屬釩及鈦之莫耳比分別為0.05、0.10、0.20和0.30。透過場發射掃描式電子顯微鏡(FE-SEM)、化學分析電子能譜儀(ESCA)、X-ray繞射儀(XRD)及表面等電荷點(pHIEP)分析不同光觸媒電極間的差異,並經由降解亞甲基藍(Methylene blue)光催化及光電催化實驗,探討光觸媒電極之活性。 由FE-SEM、XRD及ESCA等特性分析結果可知,本研究製備之TiO2/ITO光觸媒電極,顆粒大小約為30 nm,結晶構造為銳鈦礦晶型。而V-TiO2/ITO光觸媒電極顆粒大小一致性差,粒徑大小為10 nm至100 nm不一,晶型則轉變成銳鈦礦及金紅石混合型晶型。利用過渡金屬V改質後之光觸媒電極中之Vn+,主要以V3+、V4+及V5+存在。表面等電位點結果顯示,添加過渡金屬釩之TiO2光觸媒電極有較低之pHIEP。 於本研究中,不論吸附實驗或是光催化實驗,皆以0.30VT-I光觸媒電極具有最佳之去除亞甲基藍能力。以不同光源進行光催化實驗中發現,0.30VT-I光觸媒電極於紫外光及可見光系統下,對亞甲基藍之去除量相近。由光電流實驗推測,利用過渡金屬V改質後之光觸媒電極可能會由N型半導體轉變成P型半導體。依光電催化實驗結果,外加0.300 V電壓可有效提升整體光觸媒電極之光電催化能力。zh_TW
dc.description.abstractThe object of this study is to modify the TiO2/ITO photocatalytic electrode with vanadium. The V-doped TiO2/ITO photocatalytic electrodes were synthesized by sol-gel method and dip-coating method. Both TiO2/ITO and V-TiO2/ITO photocatalytic electrodes were characterized by Field emission scanning electron microscope(FE-SEM), Electron spectroscopy for chemical analysis system(ESCA), X-ray diffractometer(XRD)and Isoelectric point(pHIEP). The photocatalytic and photoelectrocatalytic activities were evaluated by the degradation of methylene blue under different parameters. As the results of the external analysis of SEM, ESCA and XRD, the particle size of the TiO2/ITO photocatalytic electrode is about 30 nm and mainly Anatase structure. The particle size of V-TiO2/ITO photocatalytic electrodes is not uniform with the size range, from 10nm to 100 nm. The contents of the Rutile phase increase with the increase of the amount of doped Vanadium. Vanadium in the photocatalytic electrodes is in the status of V3+, V4+ and V5+. The pHIEP of V-doped TiO2/ITO photocatalytic electrodes are more lower than pure TiO2/ITO photocatalytic electrode. The 0.30VT-I photocatalytic electrode has the best ability both on the adsorption and photocatalytsis. Even in the visible light system, the 0.30VT-I photocatalytic electrode has great photoactivity as same as in the UV light system. The V-doped TiO2/ITO photocatalytic electrodes may convert N-type semiconductor into P-type semiconductor. Applied potential 0.300V would effectively increase the photoelectrocatalytic activity.en_US
dc.description.tableofcontents摘要………………………………………………………………………………… i ABSTRACT………………………………………………………………………... ii 目錄…………………………………………..…………………………………….. iii 圖目錄………………………………………..…………………………………….. vi 表目錄………………………………………..…………………………………….. viii 第一章 緒論……………………………………………………………………… 1 第二章 文獻回顧………………………………………………………………… 3 2-1 光催化反應…………………………………………………………. 3 2-1-1 光化學反應…………………………………………………. 3 2-1-2 半導體的基本性質與分類…………………………………. 7 2-1-3 光導體的選擇………………………………………………. 11 2-1-4 光催化之原理與機制………………………………………. 11 2-2 二氧化鈦的基本性質………………………………………………. 14 2-2-1 晶型構造……………………………………………………. 14 2-2-2 光誘導特性…………………………………………………. 15 2-3 二氧化鈦的製備方法………………………………………………. 19 2-3-1 溶膠凝膠法…………………………………………………. 20 2-3-2 水熱法………………………………………………………. 21 2-3-3 化學氣相沉積法……………………………………………. 22 2-4 改質二氧化鈦製備可見光光觸媒…………………………………. 22 2-4-1 改質方式……………………………………………………. 23 2-5 光電化學反應………………………………………......................... 26 2-5-1 氧化銦錫導電玻璃…………………………………………. 26 2-5-2 二氧化鈦光觸媒電極之光電流……………………………. 27 2-5-3 二氧化鈦光觸媒電極之光電化學反應……………... 28 第三章 實驗設備與方法…………………………….......…………………......... 31 3-1 實驗藥品………………………….......…………………….............. 31 3-2 實驗設備………………………….......…………………….............. 33 3-2-1 光觸媒電極製備設備………………………………………. 33 3-2-2 光活性分析實驗設備………………………………………. 33 3-3實驗內容及方法………………….......……………………................. 34 3-3-1 光觸媒電極製備……….......…………………............... 35 3-3-1-1 TiO2光觸媒溶膠製備原理…….................... 35 3-3-1-2 TiO2/ITO光觸媒電極製備步驟……............ 36 3-3-1-3 V-TiO2/ITO光觸媒電極製備步驟………..... 37 3-3-2 光觸媒電極光及光電催化活性分析實驗…............ 38 3-3-2-1 實驗裝置……….....……………………........... 38 3-3-2-2 實驗步驟……….....……………....................... 38 3-3-2-3 研究內容參數….......……………………............. 39 3-4 分析項目及方法……………………….......……………………...... 40 3-4-1 光觸媒電極分析……………….......……………………...... 40 3-4-1-1 X光粉末繞射儀…….......……………………....... 40 3-4-1-2 場發射掃描式電子顯微鏡…….......……………... 40 3-4-1-3 比表面積分析儀…….......……………………....... 41 3-4-1-4 界逹電位儀…….......……………………............... 42 3-4-1-5 化學分析電子能譜儀…………………………….. 44 3-4-1-6 恆電位儀………………………………………….. 44 3-4-2 樣品分析……………………….......……………………...... 44 3-4-2-1 亞甲基藍脫色率分析………………………..…… 44 3-4-2-2 總有機碳分析………………………………..….... 45 第四章 結果與討論……………………….......……………………..................... 47 4-1 光觸媒電極特性分析………………………………………………. 47 4-1-1 場發射掃描式電子顯微鏡………………….…………….... 47 4-1-2 X-ray 繞射結晶分析……………………………….………. 51 4-1-3 化學分析電子能譜儀………………………………………. 53 4-1-4 表面等電荷點………………………………………………. 57 4-2 背景實驗……………………………………………………………. 58 4-2-1 前置實驗…………………………...……………………...... 58 4-2-2 直接光解實驗………………………………………………. 59 4-3 光觸媒電極吸附能力……………………………............................. 61 4-4 光觸媒電極光催化能力………………………………..................... 68 4-4-1 不同pH值之光催化能力…………………………………... 68 4-4-2 不同光源下之光催化能力…………………………………. 76 4-5 光觸媒電極之光電化學反應…………………................................. 78 4-5-1 光觸媒電極之光電流……………………............................. 78 4-5-2 外加電壓之光電催化能力…………..................................... 83 第五章 結論與建議…………………….................................................................. 85 5-1 結論……………………....................................................................... 85 5-2 建議……………………....................................................................... 86 參考文獻…………………….................................................................................... 87 附錄一 總有機碳檢量線….................................................................................... 93 附錄二 亞甲基藍 色度檢量線.............................................................................. 94 附錄三 JCPDS資料庫-TiO2(Anatase).............................................................. 96 附錄四 JCPDS資料庫-TiO2(Rutile)................................................................. 97zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1006200811302000en_US
dc.subjectVanadiumen_US
dc.subject過渡金屬釩zh_TW
dc.subjectPhotocatalytic electrodeen_US
dc.subjectPhotocatalyticen_US
dc.subjectPhotoelectrocatalyticen_US
dc.subject氧化銦錫玻璃zh_TW
dc.subject光觸媒電極zh_TW
dc.subject光催化反應zh_TW
dc.subject光電催化反應zh_TW
dc.title利用過渡金屬V改質TiO2/ITO光觸媒電極特性及光活性之研究zh_TW
dc.titleStudy on the characteristic and photoactivity for V-TiO2/ITO photocatalytic electrodeen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.