Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5402
標題: 以UV/TiO2結合超音波程序降解偶氮染料Acid Yellow 17之研究
Study on the degradation of Acid Yellow 17 by combination of UV/TiO2 and Ultrasonic Processes
作者: 洪紹軒
hong, shao-xuan
關鍵字: Sonophotocatalytic;偶氮染料;UV/TiO2;Acid Yellow 17;Fenton-like;二氧化鈦;超音波;鐵離子
出版社: 環境工程學系所
引用: 杜郁欣(2003),研究添加界面活性劑與過氧化氫對超音波聲解水溶液中氯酚之 影響,碩士論文,國立台灣科技大學化學工程系。 邱永亮譯(1975),染料之合成與特性,徐氏基金會出版。 邱永亮、魏盛德合譯(1975),染色化學,徐氏基金會出版。 林俊輝(1995),德國禁用特定偶氮染料之相關產品對我國產業之影響及因應之 道,工業簡訊第二十五卷第十二期,119-126。 馬英石(1998),超音波程序應用於鄰氯酚及腐植酸處理之研究,博士論文,國 立交通大學環境工程系。 葉志揚(1999),以溶液凝膠法製備二氧化鈦觸媒及其性質鑑定,碩士論文,國立台灣大學化學工程研究所。 經濟部環保署工業減廢聯合輔導小組(1993),工業減廢技術手冊1-染整工業。 廖偉登、李炳楠、樓基中(1997),紫外光/二氧化鈦程序處理甲基藍脫色之研究,第二十二屆廢水處理技術研討會論文集,298-303。 賴保帆(2000),以UV/TiO2程序處理偶氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所。 盧明俊(1993),毒性化學物質經二氧化鈦催化之光氧化反應,博士論文,國立交通大學土木工程研究所。 盧明俊、阮國棟、陳重男(1991),二氧化鈦薄膜催化光分解二氯松之研究,第十六屆廢水處理技術研討會論文集,807。 Abu-Hassan, M.A., J.K. Kim, I.S. Metcalfe and D. Mantzavinos. (2006). Kinetics of low frequency sonodegradation of linear alkylbenzene sulfonate solutions. Chemosphere, 62, 749-755. Aguedach, A., S. Brosillon, J. Morvan and E.K. Lhadi. (2008). Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. Hazardous Materials, 150, 250-256. Augugliaro, V., L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra. (1991). Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion. Applied Catalysis, 69, 323-340. Augugliaro, V., L. Palmisano and A. Sclafani. (1988). Photocatalytic Degredation of Phenol in aqueous titanium dioxide dispersion. Toxicol. Environmentol Chemistry, 16, 89-109. Balzani and Carassiti V. Balzani and V. Carassiti. (1970). Photochemistry of coord ination compounds. Academic Press, London, 10, 145–192. Bejarano-Pérez, N.J. and M.F. Suárez-Herrera. (2007). Sonophotocatalytic degradation of congo red and methyl orange in the presence of TiO2 as a catalyst. Ultrasonics Sonochemistry, 14, 589-595. Berberidou, C., I. Poulios, N.P. Xekoukoulotakis and D. Mantzavinos. (2007). Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis B: Environmental, 74, 63-72. Brezová, V., A. Blazková, E. Borosová, M. Ceppan and R. Fiala. (1995). The influence of dissolved metal ions on the photocatalytic degradation of phenol in aqueous TiO2 suspensions. Molecular Catalysis A: Chemical, 98, 109-116. Childs, L. P. and D. F. Ollis .(1980). Is photocatalysis catalytic?. Catalysis, 66, 383-390. Chiou, C., Y. Chen, C. Chang, C. Chang, J. Shie and Y. Li. (2006). Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+. Hazardous Materials, 135, 344-349. Daneshvar, N., D. Salari, and A. R. Khataee. (2004).Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2. Photochemistry and Pohotbiology A:Chemistry, 162, 317-322. Davis, A. P. and C. P. Huang. (1990). The removal of substituted phenols by photocatalytic oxidation process with cadmium Sulfide. Water Research, 24, 543-550. Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu. (1994). Photocatalytic Decolorization of wastewater dyes. Water Environment Research, 66, 50-53. Davydov, L., E.P. Reddy, P. France and P.G. Smirniotis. (2001). Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders. Applied Catalysis B: Environmental, 32, 95-105. Doede, C. M. and C. A. Walker. (1955). Photochemical Engineering. Chemical Engineering journal, 62, 159-178. Eisenberg, G... (1943). Colorimetric determination of hydrogen peroxide. Industrial and Engineering Chemistry Analytical Edition 15, 327-328. Feng, W. and D. Nansheng. (2000). Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere, 41, 1137-1147. Fox, M. A. and M. T. Dulay. (1993). Heterogeneous Photocatalysis. Chemical Reviews, 93, 341-357. Gogate, P.R. and A.B. Pandit. (2004). A review of imperative technologies for wastewater treatment II: hybrid methods. Advances in Environmental Research, 8, 553-597. Gomathi, D. L. and G. M. Krishnaiah. (1999). Photocatalytic degradation of p-amion-azo-benzene and p-hydroxy-azo-benzene using various heat treated TiO2 as the photocatalyst. Photochemistry and Photobiology, 121, 141-145. Gratzel, M.. (1983). Energy Resources through Photochemistry and Catalysis. Acadamic Press Inc. Gregg, S. J. and K. S. W. Sing. (1982). Adsorption Surface Area and Porosity, Academic Press, London. Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95, 69-75. Jiann, M. W., H. S. Huang, and C. D. Livengood. (1992). Ultraviolet destruction of chlorinated compounds in aqueous solution. Environmental Progess, 11, 195-201. Kaur, S. and V. Singh. (2007). Visible light induced sonophotocatalytic degradation of reactive red dye 198 using dye sensitized TiO2. Ultrasonics Sonochemistry, 14, 531-537. Kritikos, D.E., N.P. Xekoukoulotakis, E. Psillakis and D. Mantzavinos. (2007). Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Research, 41, 2236-2246. Lars, A. and M. Alison. (1998). Surface vacancies in CVD diamond. Diamond and Related Materials, 7, 261-265. Lee, J., M. Kim, B. Hwang, W. Bae and B. Kim. (2003). Photodegradation of acid red 114 dissolved using a photo-fenton process with TiO2. Dyes and Pigments, 56, 59-67. Legan, R. W.. (1982). Ultraviolet light takes on CPI roles. Chemical Engineering, 89, 95-100. Little, L. W. and J. C. Lamb. (1974). Acute toxicity of 46 selected dyes to the fathead minnow, pimephales promeals. Proceedings of the 29th Industrial Waste Conference, Purdue University, 525-533. Maezawa, A., H. Nakadoi, K. Suzuki, T. Furusawa, Y. Suzuki and S. Uchida. (2007). Treatment of dye wastewater by using photo-catalytic oxidation with sonication. Ultrasonics Sonochemistry, 14, 615-620. Maron, S. H. and J. B. Lando. (1974). Fundamentals of Physical Chemistry. Macmillan Publishing Co. Inc., New York. Mrowetz, M., C. Pirola and E. Selli. (2003). Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2. Ultrasonics Sonochemistry, 10, 247-254. Muruhanandham, M. and M. Swaminathan. (2006). Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process. Dyes and Pigments, 68, 133-142. Nilsson, R., R. Nordlinder, U. Wass, B. Meding and L.Belin. (1993). Asthma, Rhinitis, and dermatitis in workers exposed to reactive dyes. British Journal of Industrial Medicine, 50, 65-70. Noltingk, B. E. and E. A. Neppiras. (1950). Cavitation produced by ultrosound. Proceedings of the Physical Society. London, 63B,674. Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi and T. Akira. (1985). Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of Chemical Society of Japen, 58, 2015-2022. Okitsu, K., K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura and Y. Maeda. (2005). Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrasonics Sonochemistry, 12, 255-262. Ollis, D. F., E. Pelizzetti and N. Serpone. (1991). Photocatalyzed destruction of water contaminants. Environmental Science and Technol, 25, 1522-1529. Papadaki, M., R. Emery, M. A. Abu-Hassan, A. Díaz-Bustos, I. S. Metcalfe and D. Mantzavinos. (2004). Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents. Separation and Purification Technology, 34, 35-42. Prengle, H. W. and C. E. Mauk. (1978). New technology: Ozone/UV chemical oxidation waste water process for metal complexes: Organic Species and Disinfection. AIChE Sym. Ser., 74, 228-244. Reddy, E.P., L. Davydov and P. Smirniotis. (2003). TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support. Applied Catalysis B: Environmental, 42, 1-11. Sakata, T. and T. Kawai. (1983). Photosynthesis and photocatalysis with semiconductor powder-in energy resources through photochemistry and catalysis. Gratzel, M., Ed., Academic Press, New York. Sclafain, A., L. Palmisano, and M. Schiavello. (1990). Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion. Physical Chemical, 94, 829-832. Selvam, K., M. Muruganandham, N. Sobana and M. Swaminathan. (2007). Enhancement of UV-assisted photo-fenton degradation of reactive orange 4 using TiO2-P25 nanoparticles. Separation and Purification Technology, 54, 241-247. Shimizu, N., C. Ogino, M.F. Dadjour and T. Murata. (2007). Sonocatalytic degradation of methylene blue with TiO2 pellets in water. Ultrasonics Sonochemistry, 14, 184-190. Silva, A.M.T., E. Nouli, Â C. Carmo-Apolinário, N.P. Xekoukoulotakis and D. Mantzavinos. (2007). Sonophotocatalytic/H2O2 degradation of phenolic compounds in agro-industrial effluents. Catalysis Today, 124, 232-239. Skoog, D. A. and D. M. West. (1982). Fundamentals of Analytical Chemistry.Fourth Ed., CBS College Publiching. Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins. (1993). Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water. Water Environment Research, 65, 665-673. Suslick, K.S., S.J. Doktycz and E.B. Flint. (1990). On the origin of sonoluminescence and sonochemistry. Ultrasonics, 28, 280-290. Suslick, K.S.. (1990). Sonochemistry. Science, 247, 1439-1445. Suslick, K.S. (1998). Ultrasound: Its Chemistry, Physical and Biological Effects, VCH Publishers, New York. Tanaka, K., K. Padermpole and T. Hisanaga. (2000). Photocatalytic degradation of commercial azo dyes. Water Research, 34, 327-333. Tang, W. Z. and R. Z. Chen. (1995). Decolorization kinetic and Mechanisms of Commercial Dyes by H2O2/Iron Powder System. Chemosphere, 32, 947-958. Tang, W. Z. and H. An. (1995). UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution. Chemosphere, 31, 4150-4170. Turner, J. C. R.. (1981). An introduction to the theory of catalytic reactors. Catalysis Science and Technology, 1, 43-86. Turro, N. J.. (1965). Molecular Photochemistry. Columbia University, N. Y., 1. Vassilakis, C., A. Pantidou, E. Psillakis, N. Kalogerakis and D. Mantzavinos. (2004). Sonolysis of natural phenolic compounds in aqueous solutions: Degradation pathways and biodegradability. Water Research, 38, 3110-3118. Velegraki, T., I. Poulios, M. Charalabaki, N. Kalogerakis, P. Samaras and D. Mantzavinos. (2006). Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution. Applied Catalysis B: Environmental, 62, 159-168. Wang, J., W. Sun, Z. Zhang, Z. Xing, R. Xu, R. Li, et al. (2008). Treatment of nano-sized rutile phase TiO2 powder under ultrasonic irradiation in hydrogen peroxide solution and investigation of its sonocatalytic activity. Ultrasonics Sonochemistry 15, 301-307. Walton, A. J. and G. T. Renolds. (1984). Sonoluminescence. Advance in Physics, 33, 595-660. Wanpeng, Z., Y. Zhihua and W. Li. (1996). Application of ferrous-hydrogen peroxide for the treatment of h-acid manufacturing process wastewater. WaterRersearch, 30, 2949–2954. White, J.R. and A.J. Bard. (1985). Electrochemical investigation of photocatalysis at cadmium sulfide suspensions in the presence of methylviologen. Physical Chemistry, 89, 1947-1954. Wold, A.. (1993). Photocatalytic properties of TiO2. Chemistry of Materials, 5, 280-283. Wu J. M., Huang H. S. and Livengood C. D.. (1992). Ultrasonic destruction of chlorinated compounds in aqueous solution. Environmental Progress, 11, 195-201. Yano, J., J. Matsuura, H. Ohura and S. Yamasaki. (2005). Complete mineralization of propyzamide in aqueous solution containing TiO2 particles and H2O2 by the simultaneous irradiation of light and ultrasonic waves. Ultrasonics Sonochemistry, 12, 197-203. Zafiriou, O. C., J. J. Dubien, R. G. Zepp, and R. G. Zika. (1984). Photochemistry of natural waters. Environmental Science and Technol, 18, 358A-371A. Zepp, R. G., (1988). Factors affecting the photochemical treatment of hazardous waste. Environmental Science and Technol, 22, 256-257.
摘要: 
本研究為結合UV/TiO2程序與超音波程序降解偶氮染料Acid Yellow 17之實驗,探討pH值、染料初始濃度、TiO2添加量、二價鐵與三價鐵添加量對整體去除效率之影響。
在10瓦超音波與13瓦UVA燈管照射下,兩處理程序之結合具有明顯的加成性處理效果。由觸媒特性分析結果可知, TiO2之晶型與外觀並無明顯改變,而比表面積可提升約53%。
由於反應過程中並沒有偵測到過氧化氫之生成(低於1 mg/L),故二價鐵與三價鐵之添加並無法有效產生Fenton-like之反應,然而鐵離子之添加對染料之初始吸附量與降解速率有顯著之影響,且在相同濃度下,三價鐵之處理效果優於二價鐵。

The degradation of Acid Yellow 17 was investigated by means of photocatalysis and ultrasound irradiation. The effects of parameters such as pH, initial concentration of dye, TiO2, addition of Fe2+ and Fe3+ were studied. Experiments were conducted at an ultrasound intensity of 10 W and a 13 W UVA lamps and a synergistic effect between sonolysis and photocatalysis was observed. The physicochemical properties of TiO2 were characterized by using BET surface area, XRD and FE-SEM. The results show that there was no significant change in crystal structure and appearance on TiO2, but the specific surface area of TiO2 was increased by about 53%. For the cases studied, there was no hydrogen peroxide formation(<1 mg/L), so the Fenton-like reaction was not significant. Fe3+ and Fe2+ were found to affect both the adsorption equilibrium on TiO2 and the degradation efficiency, and Fe3+ had the better results than Fe2+.
URI: http://hdl.handle.net/11455/5402
其他識別: U0005-1006200811403600
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.