Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorChun-Hsiung Hungen_US
dc.contributor.authorWang, Shu-Tingen_US
dc.identifier.citation中文文獻 圖書 蔡文城 (1984) 應用臨床微生物診斷學,九州出版社,台北 期刊 吳耿東 及 李宏台 (2004) 生質能源.科學發展.383:20-27 陳國誠 (1998) 微生物固定化技術在廢水處理的應用.工業污染防治季刊. 17:1-23. 黃加成 (1991) 乳酸菌之特性與利用.雜糧與畜產.221: 21-28. 論文集 吳石乙,林奇賢,黃俊榮,許秉叡,林棋能 及 張嘉修 (2005) 崩潰型生物可分解塑膠生物產氫可行性評估.第三十屆廢水處理技術研討會論文集.第113頁,桃園. 鄭幸雄,李學霖,趙禹杰 及 黃良銘 (2005) 利用澱粉及蛋白腖複合基質進行厭氧生物產氫程序.第三十屆廢水處理技術研討會.第14頁,桃園. 論文 余憲忠 (2005) 以流式細胞儀偵測厭氧產氫醱酵系統中微生物產氫活性,國立中興大學生命科學所,碩士論文,台中。 李安盛 (2004) 生物暗醱酵產氫,逢甲大學化學工程系研究所,碩士論文,台中。 李國興 (2004) 以顆粒污泥程序進行高速厭氧醱酵產氫,逢甲大學化學工程系,博士論文,台中。 官荻偉 (2007) 探討顆粒性厭氧產氫反應槽中各微生物組成關係對產氫效能之影響,國立中興大學環境工程研究所,碩士論文,台中。 林明正 (2000) CSTR厭氧產氫反應槽之啟動及操作,逢甲大學土木及水利工程研究所,碩士論文,台中。 林祺能 (2002) 固定化細胞產氫,逢甲大學化學工程學系,碩士論文,台中。 陳欣微 (2005) 完全混合厭氧發酵產氫系統在不同操作條件下之菌群結構分析,國立中興大學環境工程研究所,碩士論文,台中。 蔡孟倫 (2004)CSTR系統醱酵產氫之研究溫度效應與效能提升策略之探討,逢甲大學化學工程系研究所,碩士論文,台中。 鄭如琇 (2006) 以微生物組成探討厭氧醱酵系統之產氫效能,國立中興大學環境工程研究所,碩士論文,台中。 網路資料 大紀元時報 (2005) IEA:氫用量增世紀中可減一半溫室氣體排量: 曾怡禎 及 張權英 (2004) 利用分子生物方法分析微生物社會的結構: 經濟部能源局 (2006) 再生能源: 英文文獻 Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., and Lukas, J. (2002) Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Amann, R.I., Krumholz, L., and Stahl, D.A. (1990) Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic, and Environmental Studies in Microbiology. Journal of Bacteriology 172: 762-770. Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995) Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiology Reviews. 59: 143-169. Arik, T., Gunduz, U., Yucel, M., Turker, L., Sediroglu, V., and Eroglu, I. (1996) Photoproduction of Hydrogen by Rhodobacter Sphaeroides OU001. Proceedings of the 11th World Hydrogen Energy Conference.Viroglu TN, W.C., Baselt JP, Kreysa G, (ed). Germany Frankfurt: Scon & Wetzel GmbH, p. 2417–2426. Aristidou, A., and Penttila, M. (2000) Metabolic Engineering Applications to Renewable Resource Utilization. Current Opinion in Biotechnology 11: 187-198. Armor, J.N. (1999) The Multiple Roles for Catalysis in the Production of H2. Applied Catalysis A: General 176: 159-176. Batstone, D.J., and Keller, J. (2001) Variation of Bulk Properties of Anaerobic Granules with Wastewater Type. Water Research 35: 1723-1729. Batstone, D.J., Keller, J., and Blackall, L.L. (2004) The Influence of Substrate Kinetics on the Microbial Community Structure in Granular Anaerobic Biomass. Water Research 38: 1390-1404. BIO-RAD (2003) Protocol of Dcodetm Universal Mutation Detection System: BIO-RAD. Bos, R., van der Mei, H.C., and Busscher, H.J. (1999) Physico-Chemistry of Initial Microbial Adhesive Interactions - Its Mechanisms and Methods for Study. FEMS Microbiology Reviews 23: 179-229. Brock, T.D., Madigan, M.T., Martiko, J.M., and Parker, J. (1994) Biology of Microorganisms: Pretice-Hall. Cato, E.P., Moore, W.L., and Finegold (1986) Genus Clostridium. Bergey''s Manual of Systematic Bacteriology 2: 1141-1200. Cescutti, P., Toffanin, R., Pollesello, P., and Sutherland, I.W. (1999) Structural Determination of the Acidic Exopolysaccharide Produced by a Pseudomonas sp. Strain 1.15. Carbohydrate Research 315: 159-168. Chang, F.-Y., and Lin, C.-Y. (2004) Biohydrogen Production Using an up-Flow Anaerobic Sludge Blanket Reactor. International Journal of Hydrogen Energy 29: 33-39. Chang, J.J., Chen, W.E., Shih, S.Y., Yu, S.J., Lay, J.J., Wen, F.S., and Huang, C.C. (2006) Molecular Detection of the Clostridia in an Anaerobic Biohydrogen Fermentation System by Hydrogenase Mrna-Targeted Reverse Transcription-Pcr. Applied Microbial and Cell Physiology 70: 598-604. Chen, C.C., Lin, C.Y., and Chang, J.S. (2001) Kinetics of Hydrogen Production with Continuous Anaerobic Cultures Utilizing Sucrose as the Limiting Substrate. Applied Microbiology and Biotechnology 57: 56-64. Chen, X., Sun, Y., Xiu, Z., Li, X., and Zhang, D. (2006) Stoichiometric Analysis of Biological Hydrogen Production by Fermentative Bacteria. International Journal of Hydrogen Energy 31: 539-549. Chin-Chao Chen, C.-Y.L.M.-C.L. (2002) Acid–Base Enrichment Enhances Anaerobic Hydrogen Production Process. Applied Microbiology and Biotechnology 58: 224-228. Comte, S., Guibaud, G., and Baudu, M. (2006) Biosorption Properties of Extracellular Polymeric Substances (EPS) Resulting from Activated Sludge According to Their Type: Soluble or Bound. Process Biochemistry 41: 815-823. Czuppon, T.A., Knez , S.A., and Newsome, D.S. (1996) Othmer Encyclopedia of Chemical Technology. New York: Wiley. Das, D., and Veziroglu, T.N. (2001) Hydrogen Production by Biological Processes: A Survey of Literature. International Journal of Hydrogen Energy 26: 13. Delong, E.F., Wickham, G.S., and Pace, N.R. (1989) Phylogenetic Stain:Ribosomal rRNA-Based Probes for the Indentification of Single Cells. Science 243: 1360-1363. Diaz, E., Amils, R., and Sanz, J.L. (2003) Molecular Ecology of Anaerobic Granular Sludge Grown at Different Conditions. Water Science and Technology 48: 57-64. Dorigo, U., Volatier, L., and Humbert, J.F. (2005) Molecular Approaches to the Assessment of Biodiversity in Aquatic Micorbial Communities. Water Research 39: 2207-2218. Durmaz, B., and Sanin, F.D. (2001) Effect of Carbon to Nitrogen Ratio on the Composition of Microbial Extracellular Polymers in Activated Sludge. Water Science and Technology 44: 221-229. Ezeji, T.C., Qureshi, N., and Blaschek, H.P. (2005) Continuous Butanol Fermentation and Feed Starch Retrogradation: Butanol Fermentation Sustainability Using Clostridium Beijerinckii Ba101. Journal of Biotechnology 115: 179-187. Fang, H., Zhang, T., and Liu, H. (2002a) Microbial Diversity of a Mesophilic Hydrogen-Producing Sludge. Applied Microbiology and Biotechnology 58: 112-118. Fang, H.H.P., Liu, H., and Zhang, T. (2002b) Characterization of a Hydrogen-Producing Granular Sludge. Biotechnology and Bioengineering 78: 44-52. Fang, H.H.P., Li, C., and Zhang, T. (2006a) Acidophilic Biohydrogen Production from Rice Slurry. International Journal of Hydrogen Energy 31: 683-692. Fang, H.H.P., Zhang, T., and Li, C. (2006b) Characterization of Fe-Hydrogenase Genes Diversity and Hydrogen-Producing Population in an Acidophilic Sludge. Journal of Biotechnology 126: 357-364. Farrés, J., Caminal, G., and López-Santín, J. (1997) Influence of Phosphate on Rhamnose-Containing Exopolysaccharide Rheology and Production by Klebsiella I-714. Applied Microbiology and Biotechnology 48: 522-527. Fascetti, E., and Todini, O. (1995) Rhodobacter Sphaeroides RV Cultivation and Hydrogen Production in a One- and Two-Stage Chemostat. Applied Microbiology and Biotechnology 44: 300. Ferris, M.J., and Ward, D.M. (1997) Seasonal Distributions of Dominant 16S rRNA-Defined Populations in a Hot Spring Microbial Mat Examinant by Denaturing Gradient Gel Electrophoresis. Applied and Environmental Mircrobiology 63: 1375-1381. Flickinger, M. (1980) Current Biological Research in Conversion of Cellulosic Carbohydrates into Liquid Fluels:How Far Have We Come. Biotechnol Bioengne 22: 27-48. Forster, C.F. (1991) Anaerobic Upflow Sludge Blanket Reactors: Aspects of Their Microbiology and Their Chemistry. Journal of Biotechnology 17: 221-231. Franks, A.H., Harmsen, H.J., Raangs, G.C., Jansen, G.J., Schut, F., and Welling, G.W. (1998) Variations of Bacterial Populations in Human Feces Measured by Fluorescent in Situ Hybridization with Group-Specific 16s rRNA-Targeted Oligonucleotide Probes. Applied and Environmental Mircrobiology 64: 3336-3345. Freni, S., Calogero, G., and Cavallaro, S. (2000) Hydrogen Production from Methane through Catalytic Partial Oxidation Reactions. Journal of Power Sources 87: 28-38. Frolund, B., Palmgren, R., Keiding, K., and Nielsen, P.H. (1996) Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin. Water Research 30: 1749-1758. Gamini, A., Paoletti, S., Toffanin, R., Micali, F., Michielin, L., and Bevilacqua, C. (2002) Structural Investigations of Cross-Linked Hyaluronan. Biomaterials 23: 1161-1167. Garcia, J.-L., Patel, B.K.C., and Ollivier, B. (2000) Taxonomic, Phylogenetic, and Ecological Diversity of Methanogenic Archaea. Anaerobe 6: 205-226. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P. (1995) Regulation of Metabolic Shifts in Clostridium Acetobutylicum Atcc 824. FEMS Microbiology Reviews 17: 287-297. Gonzalez-Gil, G., Lens, P.N.L., Van Aelst, A., Van As, H., Versprille, A.I., and Lettinga, G. (2001) Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor. Applied and Environmental Mircrobiology 67: 3683-3692. Goodwin, J.A.S., and Forster, C.F. (1985) A Further Examination into the Composition of Activated Sludge Surfaces in Relation to Their Settlement Characteristics. Water Research 19: 527-533. Gottschalk, G. (1986) Bacterial Metabolism New York: Springer-Verlag. Gray, C.T., and Gest, H. (1965) Biological Formation of Molecular Hydrogen. Science 148: 186-192. Grotenhuis, J.T., Smit, M., Plugge, C.M., Xu, Y.S., van Lammeren, A.A., Stams, A.J., and Zehnder, A.J. (1991a) Bacteriological Composition and Structure of Granular Sludge Adapted to Different Substrates. In, pp. 1942-1949. Grotenhuis, J.T.C., Smit, M., Lammeren, A.A.M., Stams, A.J.M., and Zehnder, A.J.B. (1991b) Localization and Quantification of Extracellular Polymers in Methanogenic Granular Sludge. Applied Microbiology and Biotechnology 36: 115-119. Grotenhuis, J.T.C., Kissel, J.C., Plugge, C.M., Stams, A.J.M., and Zehnder, A.J.B. (1991c) Role of Substrate Concentration in Particle Size Distribution of Methanogenic Granular Sludge in UASB Reactors. Water Research 25: 21-27. Hallenbeck, P.C., and Benemann, J.R. (2002) Biological Hydrogen Production; Fundamentals and Limiting Processes. International Journal of Hydrogen Energy 27: 1185-1193. Hawkes, F.R., Dinsdale, R., Hawkes, D.L., and Hussy, I. (2002) Sustainable Fermentative Hydrogen Production: Challenges for Process Optimisation. International Journal of Hydrogen Energy 27: 1339-1347. Horan, N.J., and Eccles, C.R. (1986) Purification and Characterization of Extracellular Polysaccharide from Activated Sludges. Water Research 20: 1427-1432. Hulshoff Pol, L.W., van de Worp, J.J.M., Lettinga, G., and Beverloo, W.A. (1986) Physical Characterization of Anaerobic Granular Sludge. In Anaerobic Treatment. A grown-up Technology., RAI Halls, Amsterdam. Imai, T., Ukita, M., Liu, J., Sekine, M., Nakanishi, H., and Fukagawa, M. (1997) Advanced Start up of UASB Reactors by Adding of Water Absorbing Polymer. Water Science and Technology 36: 399-406. Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983) Growth of the Bacteria Cell. Sunderland, Massachusetts. Jiang, H.-L., Tay, J.-H., Liu, Y., and Tiong-Lee Tay, S. (2003) Ca2+ Augmentation for Enhancement of Aerobically Grown Microbial Granules in Sludge Blanket Reactors. Biotechnology Letters 25: 95-99. Jones, D.T., and D. R. Woods (1986) Acetone-Butanol Fermentation Revisited. Microbiol Rev 50: 484-524. Jorand, F., Zartarian, F., Thomas, F., Block, J.C., Bottero, J.Y., Villemin, G., Urbain, V., and Manem, J. (1995) Chemical and Structural (2d) Linkage between Bacteria within Activated Sludge Flocs. Water Research 29: 1639-1647. Jordan, J.J. (2000) Real-Time Detection of PCR Products and Microbiology. In New Technologies for Life Sciences: A Trends Guide, pp. 61-66. Kapdan, I.K., and Kargi, F. (2006) Bio-Hydrogen Production from Waste Materials. Enzyme and Microbial Technology 38: 569-582. Kataoka, N., Miya, A., and Kiriyama, K. (1997) Studies on Hydrogen Production by Continuous Culture System of Hydrogen-Producing Anaerobic Bacteria. Water Science and Technology 36: 41-47. Kato, S., Shin, H., Zong, J.C., Masaharu, I., and Yasuo, I. (2004) Effective Cellulose Degradation by a Mixed-Culture System Composed of a Cellulolytic Clostridium and Aerobic Non-Cellulolytic Bacteria. FEMS Microbiology Ecology 51: 133-142. Kim, S.-H., Han, S.-K., and Shin, H.-S. (2006) Effect of Substrate Concentration on Hydrogen Production and 16S rDNA-Based Analysis of the Microbial Community in a Continuous Fermenter. Process Biochemistry 41: 199-207. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M.L. (2002) Sustained Hydrogen Photoproduction by Chlamydomonas Reinhardtii: Effects of Culture Parameters. Biotechnology and Bioengineering 78: 731 - 740. Kothari, R., Buddhi, D., and Sawhney, R.L. (2008) Comparison of Environmental and Economic Aspects of Various Hydrogen Production Methods. Renewable and Sustainable Energy Reviews 12: 553-563. Kumar, A., Jain, S.R., Sharma, C.B., Joshi, A.P., and Kalia, V.C. (1995) Increased Hydrogen Production by Immobilized Microorganisms. World Journal of Microbiology and Biotechnology 11: 156-159. Lay, J.J. (2002) Biohydrogen Generation by Mesophilic Anaerobic Fermentation of Microcrystalline Cellulose. Biotechnology and Bioengineering 74: 280 - 287. Lay, J.J., Lee, Y.J., and Noiko, T. (1999) Feasibility of Biologocal Hydrogen Product from Organic Fraction of Municipal Solid Waste. Water Research 11: 2569-2586. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., and Chang, J.S. (2004) Anaerobic Hydrogen Production with an Efficient Carrier-Induced Granular Sludge Bed Bioreactor. Biotechnology and Bioengineering 87: 648-657. Lens, P.N.L., De Beer, D., Cronenberg, C.C.H., Houwen, F.P., Ottengraf, S.P.P., and Verstraete, W.H. (1993) Heterogeneous Distribution of Microbial Activity in Methanogenic Aggregates: pH and Glucose Microprofiles. Applied and Environmental Mircrobiology 59: 3803-3815. Lettinga, G., Velsen, A.F.M., Hobma, S.W., Zeeuw, W., and Klapwijk, A. (1980) Use of the Upflow Sludge Using Activated-Carbon Supported Packed-Bed Biological Wastewater Treatment. Biotechnology and Bioengineering 22: 699-734. Levin, D.B., Pitt, L., and Murray, L. (2004) Biohydrogen Production: Prospects and Limitations to Practical Application. International Journal of Hydrogen Energy 29: 173-185. Lin, C.Y., and Chang, R.C. (1999) Hydrogen Production During the Anaerobic Acidogenic Conversion of Glucose. Journal of Chemical Technology & Biotechnology 74: 498-500. Lin, C.Y., and Lay, C.H. (2005) A Nutrient Formulation for Fermentative Hydrogen Production Using Anaerobic Sewage Sludge Microflora. International Journal of Hydrogen Energy 30: 285-292. Lin, T.Y., and Chien, M.F.C. (2007) Exopolysaccharides Production as Affected by Lactic Acid Bacteria and Fermentation Time. Food Chemistry 100: 1419-1423. Lipski, A., Friedrich, U., and Altendorf, K. (2001) Application of rRNA-Targeted Oligonucleotide Probes in Biotechnology. Applied Microbiology and Biotechnology 56: 40-57. Liu, H., and Fang, H.H.P. (2002a) Characterization of Electrostatic Binding Sites of Extracellular Polymers by Linear Programming Analysis of Titration Data. Biotechnol Bioeng 80: 806-811. Liu, H., and Fang, H.H.P. (2002b) Extraction of Extracellular Polymeric Substances (EPS) of Sludges. Journal of Biotechnology 95: 249-256. Liu, W.T., Mono, T., and Nakamura, K. (1996) Glycogen Accumulating Population and Its Anaerobic Uptake in Anaerobic-Aerobic Activated Substrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological Phosphate Removal. Water Research 30: 75-82. Liu, Y.-Q., Liu, Y., and Tay, J.-H. (2004) The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules. Applied Microbiology and Biotechnology 65: 143-148. Liu, Y., and Tay, J.-H. (2002c) The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge. Water Research 36: 1653-1665. Liu, Y., Xu, H.-L., Yang, S.-F., and Tay, J.-H. (2003a) Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research 37: 661-673. Liu, Y., Yang, S.-F., Liu, Q.-S., and Tay, J.-H. (2003b) The Role of Cell Hydrophobicity in the Formation of Aerobic Granules. Current Microbiology 46: 0270-0274. MacLeod, F.A., S. R. Guiot, and J. W. Costerton (1990) Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor. Applied and Environmental Mircrobiology 56: 1598-1607. Madigan, M.T., and Martinko, J.M. (2006) Brock:Biology of Microorganisms. USA: Prentice Hall International. Mahmoud, N., Zeeman, G., Gijzen, H., and Lettinga, G. (2003) Solids Removal in Upflow Anaerobic Reactors, a Review. Bioresource Technology 90: 1-9. Mancuso Nichols, C.A., Garon, S., Bowman, J.P., Raguenes, G., and Guezennec, J. (2004) Production of Exopolysaccharides by Antarctic Marine Bacterial Isolates. Journal of Applied Microbiology 96: 1057-1066. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Systematic and Applied Microbiology 15: 593-600. McSwain, B.S., Irvine, R.L., Hausner, M., and Wilderer, P.A. (2005) Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge. In, pp. 1051-1057. Meier, H., Amann, R., Ludwig, W., and Schleifer, K.H. (1999) Specific Oligonucleotide Probes for in Situ Detection of a Major Group of Gram-Positive Bacteria with Low DNA G+C Content. Systematic and Applied Microbiology 22: 186. Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M. (2000) Sustained Photobiological Hydrogen Gas Production Upon Reversible Inactivation of Oxygen Evolution in the Green Alga Chlamydomonas Reinhardtii. Plant Physiology 122: 127-136. Mengistu, Y., Edwards, C., and Saunders, J.R. (1994) Continuous Culture Studies on the Synthesis of Capsular Polysaccharide by Klebsiella Pneumoniae K1. In, pp. 424-430. Meyer, J., and Gagnon, J. (1991) Primary Structure of Hydrogenase I from Clostridium Pasteurianum. Biochemistry 30: 9697-9704. Minnan, L., Jinli, H., Xiaobin, W., Huijuan, X., Jinzao, C., Chuannan, L., Fengzhang, Z., and Liangshu, X. (2005) Isolation and Characterization of a High H2-Producing Strain Klebsiella Oxytoca Hp1 from a Hot Spring. Research in Microbiology 156: 76-81. Miyake, J., and Kawamura, S. (1987) Efficiency of Light Energy Conversion to Hydrogen by the Photosynthetic Bacterium Rhodobacter Sphaeroides. International Journal of Hydrogen Energy 12: 147. Miyake, J., Miyake, M., and Asada, Y. (1999) Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology 70: 89-101. Morimoto, K., Kimura, T., Sakka, K., and Ohmiya, K. (2005) Overexpression of a Hydrogenase Gene in Clostridium Paraputrificum to Enhance Hydrogen Gas Production. FEMS Microbiology Letters 246: 229-234. Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes Coding for 16S rRNA. Applied and Environmental Mircoblogy 59: 695-700. Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogenase: An Overview. Critical Reviews in Microbiology 24: 61-84. Nath, K., and Das, D. (2004) Improvement of Fermentative Hydrogen Production: Various Approaches. Applied Microbiology and Biotechnology. 65: 520-529. Ni, M., Leung, D.Y.C., Leung, M.K.H., and Sumathy, K. (2006) An Overview of Hydrogen Production from Biomass. Fuel Processing Technology 87: 461-472. Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews 11: 401-425. Nielsen, A.T., Liu, W.-T., Filipe, C., Grady, L., Jr., Molin, S., and Stahl, D.A. (1999) Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor. Applied and Environmental Mircoblogy 65: 1251-1258. Nielsen, P.H., Jahn, A., and Palmgren, R. (1997) Conceptual Model for Production and Composition of Exopolymers in Biofilms. Water Science and Technology 36: 11-19. Patil, P., De Abreu, Y., and Botte, G.G. (2006) Electrooxidation of Coal Slurries on Different Electrode Materials. Journal of Power Sources 158: 368-377. Payne, M.J., Chapman, A., and Cammack, R. (1993) Evidence for an [Fe]-Type Hydrogenase in the Parasitic Protozoan Trichomonas Vaginalis. FEBS Letters 317: 101-104. Peters, J.W., Lanzilotta, W.N., Lemon, B.J., and Seefeldt, L.C. (1998) X-Ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium Pasteurianum to 1.8 Angstrom Resolution. Science 282: 1853-1858. Poulsen, L.K., Ballard, G., and Stahl, D.A. (1993) Use of rRNA Fluorescence in Situ Hybridization for Measuring the Activity of Single Cells in Young and Established Biofilms. Applied and Environmental Mircrobiology 59: 1354-1360. Pringle, J.H., and Fletcher, M. (1983) Influence of Substratum Wettability on Attachment of Freshwater Bacteria to Solid Surfaces. In, pp. 811-817. Qin, L., Liu, Q., Yang, S., Tay, J., and Liu, Y. (2004) Stressful Conditions-Induced Production of Extracellular Polysaccharides in Aerobic Granulation Process. CiVil Eng Res 17: 49-51. Quarmby, J., and Forster, C.F. (1995) An Examination of the Structure of UASB Granules. Water Research 29: 2449-2454. Ramachandran, R., and Menon, R.K. (1998) An Overview of Industrial Uses of Hydrogen. International Journal of Hydrogen Energy 23: 593. Rouxhet, P.G., and Mozes, N. (1990) Physical Chemistry of the Interaction between Attached Microorganisms and Their Support. Water Science and Technology 22: 1-16. Saiki, Y., Iwabuchi, C., Katami, A., and Kitagawa, Y. (2002) Microbial Analyses by Fluorescence in Situ Hybridization of Well-Settled Granular Sludge in Brewery Wastewater Treatment Plants. Journal of Bioscience and Bioengineering 93: 601-606. Schmidt, J.E.E., and Ahring, B.K. (1994) Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors. Applied Microbiology and Biotechnology 42: 457-462. Schmitz, R., Daniel, R., Deppenmeier, U., and Gottschalk, G. (2006) The Anaerobic Way of Life. In The Prokaryotes. Shen, C.F., Kosaric, N., and Blaszczyk, R. (1993) The Effect of Selected Heavy Metals (Ni, Co and Fe) on Anaerobic Granules and Their Extracellular Polymeric Substance (EPS). Water Research 27: 25-33. Sleat, R., Mah, R., and Robinson, R. (1984) Isolation and Characterization of an Anaerobic,Cellulolytic Bacterium,Clostridium Cellulovorans Sp.Nov. Applied and Environmental Mircoblogy 48: 88-93. Solomon, B.O., Zeng, A.P., Biebl, H., Schlieker, H., Posten, C., and Deckwer, W.D. (1995) Comparison of the Energentic Efficiencies of Hydrogen and Oxychemicals Formation in Klebsiella Pneumoniae and Clostridium Butyricum During Anaerobic Growth on Glycerol. Biotechnology 39: 107-117. Stackebrandt, E., and Rainey, F.A. (1997) The Clostridia : Molecular Biology and Pathogenesis. The Clostridia : Molecular Biology and Pathogenesis. Rood, J.I., McClane, B. A., Songer, J. G. and Titball, R.W. (ed): Academic Press, pp. 3-19. Stahl, D.A., and Amann, R.I. (1991) Development and Application of Nucleic Acid Probes in Bacterial Systematics. Sequencing and Hybridization Techniques in Bacterial Systematics. E. Stackebrandt, and M. Goodfellow (eds). England: John Wilry and Sons, pp. 205-248. Straus, D.C. (1986) Production of an Extracellular Toxic Complex by Various Strains of Klebsiella Pneumoniae. American Society for Microbiology 55: 44-48. Suzuki, Y. (1982) On Hydrogen as Fuel Gas. International Journal of Hydrogen Energy 7: 227-230. Sveshnikov, D.A., Sveshnikova, N.V., Rao, K.K., and Hall, D.O. (1997) Hydrogen Metabolism of Mutant Forms of Anabaena variabilis in Continuous Cultures and under Nutritional Stress. FEMS Microbiology Letters 147: 297-301 Take, T., Tsurutani, K., and Umeda, M. (2007) Hydrogen Production by Methanol-Water Solution Electrolysis. Journal of Power Sources 164: 9-16. Tanisho, S., and Ishiwata, Y. (1994) Continuous Hydrogen Production from Molasses by the Bacterium Enterobacter Aerogenes. International Journal of Hydrogen Energy 19: 807-812. Tanisho, S., Kuromoto, M., and Kadokura, N. (1998) Effect of CO2 Removal on Hydrogen Production by Fermentation. International Journal of Hydrogen Energy 7: 559-563. Tay, J.-H., and Yan, Y.-G. (1996) Influence of Substrate Concentration on Microbial Selection and Granulation During Start-up of Upflow Anaerobic Sludge Blanket Reactors. Water Environment Research 68: 1140-1150. Tay, J.H., Liu, Q.S., and Liu, Y. (2001a) The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules. Applied Microbiology and Biotechnology 57: 227-233. Tay, J.H., Liu, Q.S., and Liu, Y. (2001b) The Role of Cellular Polysaccharides in the Formation and Stability of Aerobic Granules. In, pp. 222-226. Tay, J.H., Yang, S.F., and Liu, Y. (2002) Hydraulic Selection Pressure-Induced Nitrifying Granulation in Sequencing Batch Reactors. Applied Microbiology and Biotechnology 59: 332-337. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y. (2001) Characterization of a Microorganism Isolated from the Effluent of Hydrogen Fermentation by Microflora. Journal of Bioscience and Bioengineering 92: 397-400. Urbain, V., Block, J.C., and Manem, J. (1993) Bioflocculation in Activated Sludge: An Analytic Approach. Water Research 27: 829-838. Van Dyke, M.I., and McCarthy, A.J. (2002) Molecular Biological Detection and Characterization of Clostridium populations in Municipal Landfill Sites. Applied and Environmental Mircrobiology 68: 2049-2053. Vasconcelos, I., Girbal, L., and Soucaille, P. (1994) Regulation of Carbon and Electron Flow in Clostridium Acetobutylicum Grown in Chemostat Culture at Neutral pH on Mixtures of Glucose and Glycerol. Journal of Bacteriology 176: 1443-1450. Veziroglu, T.N. (1995) Twenty Years of the Hydrogen Movement 1974-1994. International Journal of Hydrogen Energy 20: 1. Wagner, M., Amann, R., Lemmer, H., Manz, W., and Schleifer, K.H. (1994) Probing Activated Sludge with Fluorescently Labeled rRNA Targeted Oligonucleotides. Water Science and Technology 29: 15 - 23. Wallner, G., Amann, R., and Beisker, W. (1993) Optimizing Fluorescent in Situ Hybridization with rRNA-Targeted Oligonucleotide Probes for Flow Cytometric Identification of Microorganisms. Cytometry 14: 136 - 143. Wang, Z.-W., Liu, Y., and Tay, J.-H. (2005) Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules. Applied Microbiology and Biotechnology 69: 469-473. Woese, C.R. (1987) Bacterial Evolution. Microbiology Reviews 51: 211-271. Wu, S.-Y., Hung, C.-H., Lin, C.-N., Chen, H.-W., Lee, A.-S., and Chang, J.-S. (2006) Fermentative Hydrogen Production and Bacterial Community Structure in High-Rate Anaerobic Bioreactors Containing Silicone-Immobilized and Self-Flocculated Sludge. Biotechnology and Bioengineering 93: 934-946. Yokoi, H., Maeda, Y., Hirose, J., Hayashi, S., and Takasaki, Y. (1997) H2 Production by Immobilized Cells of Clostridium Butyricum on Porous Glass Beads. Biotechnology Techniques 11: 136-143. Zhang, T., Liu, H., and Fang, H.H.P. (2003) Biohydrogen Production from Starch in Wastewater under Thermophilic Condition. Journal of Environmental Management 69: 149-156. Zhu, Y., and Yang, S.-T. (2004) Effect of pH on Metabolic Pathway Shift in Fermentation of Xylose by Clostridium tyrobutyricum. Journal of Biotechnology 110: 143-157. Zoutberg, G.R., and Frankin, R. (1996) Anaerobic Treatment of Chemical and Brewery Waste Water with a New Type of Anaerobic Reactor; the Biobed Egsb Reactor. Water Science and Technology 34: 375-381.zh_TW
dc.description.abstract在各式厭氧醱酵產氫程序中,連續進流反應槽(CSTR)已被證實具有較佳之產氫效能,但在縮短其水力停留時間低於4 hr時,污泥往往有被洗出(wash-out)的現象,導致系統之產氫效能降低。有研究指出,於CSTR系統中添加固定化細胞可誘發自發性顆粒污泥之生成,不僅有助於增加反應槽內的biomass量及有機負荷量,亦使產氫系統能於低水力停留時間下穩定操作並提升產氫效能達3.35 mole H2/mole sucrose。本實驗室早期針對逢甲大學「生物氫能研究團隊」所架設之生物醱酵產氫槽進行菌相分析,結果皆顯示當反應槽操作於低水力停留時間時,槽內會有自發性顆粒污泥之生成,並證實其生成可能與會產生胞外聚合物(EPS)之Streptococcus sp.菌群存在有關,因此,本實驗將研究在自發性顆粒污泥生成過程中,其EPS產生量與顆粒結構及產氫族群與EPS生成菌群之相互關係,以推導出顆粒污泥形成的主要因素。 結果指出,操作於HRT 2 hr時,系統中有少量之EPS產生並有少量顆粒之生成,顆粒平均粒徑為0.66 mm,此時Streptococcus sp.(LGC354)菌屬有較高之比例,系統之產氫速率及氫氣產率為1.49 L/h/L及2.24 mole H2/mole sucrose;當系統操作於HRT 1 hr時,有較多之EPS被產生並有大量顆粒生成,以致有最高之MLSS濃度(52700 mg/L),此時Clostridium sp.(Chis150)菌屬有較高之比例存在,其顆粒結構較緊實且其平均粒徑為1.48 mm,產氫速率及氫氣產率也提升至3.80 L/h/L及2.97 mole H2/mole sucrose;系統操作於HRT 0.5 hr時,Clostridium sp.(Chis150)菌屬亦有較Streptococcus sp.(LGC354)高之比例,而顆粒之結構較HRT 1 hr時鬆散且平均粒徑為2.26 mm,此時系統有較佳之產氫速率及氫氣產率為6.95 L/h/L及5.03 mole H2/mole sucrose,而顆粒中主要之Clostridium sp.以C. pasteurianum為主。於顆粒相及懸浮相之總菌群結果中發現,Streptococcus lutetiensis只於顆粒相結果中被發現。 綜合以上的結果可得知,隨水力停留時間的縮短,系統中之顆粒有變大之趨勢,產氫速率及氫氣產率有明顯上升的現象,而EPS之產生有助於系統中顆粒之生成,且顆粒中優勢產氫菌以C. pasteurianum為主;此外,亦發現顆粒中附著之EPS含量的多寡可能會影響顆粒結構的緊實或鬆散,進而影響系統之產氫效能。zh_TW
dc.description.abstractAmong all the anaerobic fermentation hydrogen producing systems, anaerobic continuous stirred tank reactor (CSTR) was proved to have high producing efficiency. However, when it was operated under 4 hour hydraulic retention time (HRT), the system tended to undergo serious washing out of biomass as well as decreasing of the hydrogen production efficiency. This disadvantage can be solved by adding immobilized cell to promote the formation of granular sludge. It had been proven that this addition not only raises the biomass concentration and the organic loading rate but also enhances the hydrogen production yield up to 3.35 mole H2/mole sucrose at low HRT operation. Previous studies conducted by our lab have found that a EPS producing bacteria strain Streptococcus sp. could significantly participate in the formation of self-form granular. Therefore, the goal of this study is to explore the relationship between the production of EPS and granular structure as well as the changing of microorganism composition during the granular formation. Results from this study indicated that when the system was operated under 2 hr HRT, low concentration of EPS was produced and average size of the anaerobic granules was 0.66 mm. Hydrogen production rate and hydrogen production yield were 1.49 L/h/L and 2.24 mole H2/mole sucrose, respectively. The results also revealed that there was a high proportion of Streptococcus sp. (LGC354) existed in the system. When the system was operated at 1 hr HRT, significant production of EPS was observed and average particle size of the anaerobic granules was 1.48 mm in accompany with the a highest observed MLSS concentration (52,700 mg/L) and existence of many Clostridium sp. cell counts. Hydrogen production rate and hydrogen production yield were enhanced to 3.80 L/h/L and 2.97 mole H2/mole sucrose, respectively. When the system was operated under HRT=0.5 hr, we fined that the proportion of Clostridium sp. were higher than that of Streptococcus sp. and the granule structure at HRT 0.5 hr was not denser than that of HRT 1 hr. At this operation, the best hydrogen production rate and hydrogen production yield were 6.95 L/h/L and 5.03 mole H2/mole sucrose were found and the C. pasteurianum were the main Clostridium species in the granule sludge which average particle size was 2.26 mm. Also, from the microorganism community structure between the granule-phase and suspension-phase, the bacteria of Streptococcus lutetiensis only can be fined in the granule-phase. Based on the results collected in this study, it appeared that the size of the granular, hydrogen production rate, and hydrogen production yield all increased with a shortening of hydraulic retention time. We also fined that the production of EPS were helping bacteria to aggregate and promoting the formation of granular sludge. C. pasteurianum was the still the predominated hydrogen producing bacteria. Furthermore, the amount of EPS adhered at granule sludge were also influenced the structure of granule sludge, and then affected the hydrogen production efficiency.en_US
dc.description.tableofcontents中文摘要 I 英文摘要 II 表目錄 VIII 圖目錄 IX 第一章 前言 1 第一節 研究緣起 1 第二節 研究目的 2 第二章 文獻回顧 4 第一節 能源發展 4 一、再生能源 4 二、生質能 4 第二節 氫氣 6 一、氫氣介紹 6 二、氫氣製備方法 7 (一)、熱化學法 8 (二)、電化學法 9 (三)、生物法 9 第三節 生物產氫 9 一、產氫微生物 10 二、原理與機制 12 (一)、直接光解(Direct biophotolysis) 12 (二)、間接光解(Indirect biophotolysis) 13 (三)、光醱酵(Photo-fermentation) 14 (四)、暗醱酵(Dark-fermentation) 16 第四節 厭氧醱酵產氫 19 一、厭氧醱酵產氫微生物 19 (一)、Clostridium菌屬之特性及產氫能力 20 (二)、Klebsiella菌屬之特性及產氫能力 22 二、厭氧生物產氫之機制 24 (一)、厭氧甲烷代謝途徑 25 (二)、Clostridium屬之碳水化合物代謝途徑 25 (三)、Clostridium屬之產氫酵素 28 第五節 顆粒污泥 29 一、EPS (extracellular polymeric substances) 29 (一)、EPS組成 29 (二)、EPS的特性 30 (三)、影響生物顆粒中EPS產生的因素 31 (四)、EPS對生物顆粒的影響 31 二、顆粒化污泥 32 (一)、顆粒污泥形成機制 32 (二)、顆粒污泥之結構 33 (三)、顆粒污泥對產氫的影響 35 第六節 厭氧醱酵顆粒產氫系統 35 一、CSABR反應器(continuously stirred anaerobic bioreactor) 36 二、UASB反應器(upflow anaerobic sludge bed;UASB) 36 三、CIGSB反應器(carrier-induced granular sludge blanket;CIGSB) 37 四、固定化細胞 37 第七節 分子生物技術於環境工程上之應用 38 一、16S rDNA及functional gene 39 二、聚合酶連鎖反應 40 三、變性梯度明膠電泳 40 四、螢光原位雜合法 43 第八節 分子生物技術於生物產氫之應用 45 一、菌相分析 45 二、定量分析 46 三、產氫酵素之研究 46 第九節 文獻閱讀心得及方向擬定 48 第三章 材料與方法 49 第一節 實驗架構 49 第二節 實驗設備 50 第三節 實驗方法 51 一、污泥來源 51 二、連續攪拌式厭氧生物醱酵產氫反應槽(CSABR) 51 第四節 分析方法 54 一、反應槽中之菌相分析 54 (一)、污泥前處理 54 (二)、DNA萃取 54 (三)、PCR 55 (四)、DGGE 56 (五)、Acrylamide/Bis膠體之DNA純化 57 (六)、親緣分析 57 二、反應槽中之族群比例分析-FISH 58 (一)、固定(Fixation) 60 (二)、雜交(Hybridization) 60 (三)、清洗(Washing) 60 (四)、DAPI染色 61 (五)、顯像(Vision) 61 三、顆粒污泥之相關分析 61 (一)、胞外多醣體之萃取 61 (二)、總糖測定:酚-硫酸法 62 (三)、位相差顯微鏡觀察 62 (四)、顆粒大小 62 (五)、MLSS測定 62 第四章 結果與討論 63 第一節 污泥顆粒化過程之分析 63 一、顆粒污泥形成過程之位相差顯微鏡觀察 63 二、顆粒大小之測定 66 三、污泥顆粒化過程之EPS分析 68 四、顆粒生成對系統產氫之影響 74 第二節 顆粒污泥於不同HRT下菌相變化與產氫效能之分析 77 一、總菌群結構分析 77 二、Clostridium菌群之菌相分析 82 第三節 系統中顆粒相與懸浮相之菌相變化比較 85 一、總菌群結構分析 85 二、Clostridium菌群之菌相分析 86 第四節 綜合討論 88 第五章 結論與建議 90 第一節 結論 90 第二節 建議 92 參考文獻 93zh_TW
dc.subjectgranule sludgeen_US
dc.titleMicrobial Community Structure During the Formation of Anaerobic Hydrogen Granular Sludgeen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.