Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5450
標題: 含銅污泥於熱處理過程中重金屬污染物逸散之研究
The Study on emission of copper metal during thermal treatment of copper sludge
作者: 謝易霖
Hsieh, Yi-Lin
關鍵字: Thermal treatment;熱處理;Copper sludge;Heavy mental;TCLP;Detoxifying;銅污泥;重金屬;TCLP;無害化
出版社: 環境工程學系所
引用: 工研院能源與資源研究所,“灰渣、污泥資源化之研究”,行政院環保署七十九年度科技研究發展年度計畫,1990 中興顧問社,“全省工業區污水處理系統功能評估”,1995 王振乾,張家源、米孝、陳啟榮、陳微色、黃婉如、陳珮蓮”螯合基側鏈對弱酸型樹脂對去除重金屬的影響”,第十四屆廢水處理技術研討會,1999 王鯤生、江康鈺、儲雯娣、林仕敏、葉宇智,”焚化溫度與垃圾PVC含量對焚化灰渣重金屬分布特性之影響”,第十三屆空氣污染控制技術研討會論文集,pp.68-76,1996。 江漢全,“水質分析”,三民書局,1996 江康鈺、王焜生,“污泥熔融處理及資源再利用技術”,工業污染防治報導,第64期,第156-187頁,1997 行政院環保署,事業廢棄物管制中心連線申報系統網頁查詢,http://waste.epa.gov.tw/,2008年05月 行政院環保署,環保法規查詢網站,網址http://w3.epa.gov.tw/epalaw/index.aspx,2008年5月 行政院環保署,公民營許可清除處理系統查詢,網址:http://waste1.epa.gov.tw/Grant/GS-UC60/QryGrantData.aspx,2008年05月 行政院環保署,再利用許可系統查詢,網址:http://waste1.epa.gov.tw/audit2/AllUser/User_Select2.asp?,2008年05月查詢 邱芳榆,“含銅污泥調質及水泥固化之研究”,碩士論文,國立成功大學環境工程學系,p.6,2004 金順志,”碳化處理技術”, 廢棄物清除處理技術講習會,工研究院環安中心,2003 林宗曾,“重金屬污泥之飛灰固化法研究”,碩士論文,國立台灣大學環境工程研究所,1985 林珊如,“半導體業氟化鈣污泥資源化途徑探討”,永續產業發展雙月刊第五期,2002 林正芳,“重金屬污泥之固化處理”,科學月刊,第26卷,第2期,p105~p108頁,1995 林黃修,“資源回收再利用技術-重金屬污泥”,工業污染防治報導,第10卷,第110期,p12~p13頁,1997 林仕敏,有機氯與無機氯對焚化過程重金屬分佈特性輯錄化物形成之影響,碩士論文,國立中央大學環境工程研究所,1997 周欽隆、謝樹木,“重金屬污泥與紅磚土混合燒成之探討”,第十屆廢棄物處理技術研討會論文集,1995,479─483。 胡紹華,“電路板業之含重金屬污泥資源化處理之研究”,博士論文,國立成功大學資源工程研究所,p.44,2007 柯家宇,“重金屬污泥鐵氧磁體安定化之研究”,碩士論文,國立成功大學環境工程與科學系,2004 陳康興、楊萬發,廢棄物焚化處理技術整合研究(Ⅰ):焚化廠燃燒過程重金屬之行為特性及其控制方法研究(Ⅱ),國科會專題研究計畫NSC 85-2211-E-002-020,1996 陳炯立,“含重金屬污泥燒製磚材資源化之研究”,碩士論文,國立台北科技大學材料及資源工程系,p.13,2004。 黃志雄,“重複化學萃取對重金屬污泥結合型態及去除效率之影響”,碩士論文,國立成功大學環境工程學系,p.5~p.8,2003。 張添晉,“污泥資源化回收再利用技術與成本效益分析”,工業污染防治報導,第48期,p139~p162頁,1993。 張仁福,“土壤污染防治學”,復文圖書出版社,高雄,第325-340頁,1998。 張祖恩、蔣立中、盧幸成、施百鴻、張益國,“重金屬污泥作為水泥替代材料可行性研究”,第十八屆廢棄物處理技術研討會,2003。 張毓寬 ,”鉻污泥資源化基礎研究”, 碩士論文, 國立成功大學資源工程學系, 2002。 章裕民,”爐溫對焚化鉛重金屬逸散影響之研究”,國科會專題研究計畫NSC 86- 2211-E027-001,1997 陳文泉,”重金屬廢水鐵氧磁體法處理之基礎研究”,碩士論文國立成功大學礦冶及材料科學研究所,1992。 陳盛宗、鄧橋明,“金屬濕式提煉回收(MR3)技術說明”,電路板會刊,第17期,p56~p62頁,2002。 黃契儒,”電鍍廢水鐵氧磁體化及前處理研究”,碩士論文,國立成功大學礦冶及材料科學研究所,1993。 巢志成、陳明德、王鑑恆,“汙泥之焚化處理技術”,工業汙染防治,64卷,138-155,1997。 楊重光,林世益,蔡幸純,“有機污泥的資源化及管理”,資源廢棄物回收再利用管理論文集,環保署&台北科技大學出版,p23-1-p23-30,2003。 楊萬顯,邱定藩,“濕式冶金”,第八章:加壓濕式冶金,p.239-p.276,1998。 楊致行,“電鍍污泥資源化再利用技術”,環保月刊,第 1卷,第 4期, p160-P166 ,2001。 楊維鈞、王壬、呂慶慧、鄭智和,“印刷電路板製造廠含銅污泥資源化技術研究”,國際工業減廢技術與策略研討會,1995。 楊維鈞、王壬、呂慶慧,“含重金屬污泥資源化技術實廠化研究”,第四屆海峽兩岸環境保護學術研討會,1996。 經濟部,學界開發產業技術,“有害重金屬污泥減量、減容及資源化關鍵技術之開發與推廣三年計劃”報告書,計劃編號91-EC-17-A-10-SI-0007,2003a。 經濟部,學界開發產業技術,“有害重金屬污泥減量、減容及資源化關鍵技術之開發與推廣三年計劃”報告書,計劃編號92-EC-17-A-10-SI-0007,2004 。 經濟部,學界開發產業技術,“重金屬污泥減量、減容及資源化關鍵技術”,研討會論文集,國立成功大學,2003b。 經濟部環保產業雙月刊第19期-電漿熔融技術處理焚化爐灰渣之實例探討,2003c。 經濟部工業局,“印刷電路板業環保工安整合性技術手冊”,2002 經濟部工業局,“廢棄物資源化技術資料彙編”,p197,1999。 經濟部工業局,工業污染防治技術服務團,“印刷電路板製造業廢棄物資源化案例彙編”,p32-34,1996。 經濟部技術處,“污染防治技術開發及推廣第二期三年計畫”,1995。 經濟部工業局,“印刷電路板業資源化應用技術手冊”,2002。 經濟部工業局,“含重金屬污泥的再資源化技術”,污泥處理與處置技術研討會,1991。 經濟部工業局,“資源化工業輔導計畫”,2005 。 蔡敏行,“重金屬廢水廢棄物處理及回收技術習討會”,財團法人生物技術開發中心,2004。 劉又瑞,“淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究”, 碩士論文,國立交通大學,2002。 盧瑞山、駱尚廉、林啟琪,“類Urrichem程序於固化含銅工業污泥之研究”,重金屬污泥減量、減容及資源化關鍵技術研討會論文集,第72~73頁,2003。 謝寅雲,“淨水污泥/工業廢水污泥之燒結資源化研究”,碩士論文,國立台灣大學,2001。 韓嘉智,“陶瓷燒結技術應用於氟化鈣污泥資源再利用”,台灣環保產業雙月刊第22期,2003。 蘇惠靖,“以萃取法復育受重金屬污染土壤之可行性評估”,碩士論文,國立屏東科技大學環境工程與科學系,2003。 臺灣美之善環工科技股份有限公司資料,“MR3 SYSTEM 高科技金屬回收技術”,2001。 Andreadakis A.D., Mamais D., Gavalaki E.and Kampylafka S.,“Sludge utilisation in agriculture:possibilities and prospects in Greece Water Science and Technology”,Vol.46, p.231-238.,2002. Bailey,S.E. ,Olin,T.J. ,Bricka,R.M. ,Adrian,D.D. ,”A review of potentially low-cost sorbents for heavy metals”,Water Research 33(11),p2469-2479.,1999. Barton R.G.,Clark W.D.,Seeker W.R.,“Fate of metals in waste combustion system”, Combustion Science and Technology, Vol. 74,p.327-342., 1990. Bela K., Laszlo K., Istvan G., Istvan E., B. Sreedhar and Karoly L.,“Study of Preparation of Zinc (II) Ferrite and ZnO from Zinc-and Iron-Containing Industrial Wastes”, Industrial & Engineering Chemistry Research,Vol.42,No. 2,P.318-322.,2003. Bernardes A.M., Bohlinger I., and Wuth W.,“The Thermal Treatment of Galvanic Sludges for Environmental Compatibility”, JOM,Vol.48,No.3,p59-62.,1996. Bober T.W., Dagon T.J.and Fowler H.E.,“Treatment of photographic processing wastes”, Handbook of Industrial Waste Treatment:Volum1, Marcel Dekker, Inc., New York,1992. Bryson,A.W. , Dardis,K.A., “Treatment of dilute metal effluents in an electrolytic Precipitator”,Water SA 6(1),p85-87.,1980. Can Q,“A case study of microwave processing of metal hydroxide sediment sludge from printed circuit board manufacturing wash water”.Waste Manag.,20,p.695-577.,2000. Cheremisinoff P.N.,“Sludge Management and Disposal“, PTR Prentice Hall,New Jersey,1994. Cheremisinoff P.N.,“Sludge management and disposal”, Englewood Cliffs New Jersery:Prentice-Hall,Inc,1994. Denis Couillard and Shucai Zhu ,“ Bacterial Leaching of Heavy Metals from Sewage Sludge for Agricultural Application”, Water, Air, and Soil Pollution,Vol.63,No.1-2,p67-80.,1992. Eckenfelder W.W., SLUDGE TREATMENT, MARCEL DEKKER, INC., New York,1981. Edding E.G., Sighty J.S.,Kozinski J.A.,”Determination of Metal Behavior during the Incineration of a Contaminated Montmorillonite Clay”, Environ.Sci.Technol., Vol. 28, 991791-1800,1994. Fernandez M.A., Martinez L., Segavra M., Garcia J. C., Espiell F., “Behavior of Heavy Metal in the Combustion Gas of Urban Waste Incinerator”, Environment Science and Technology, Vol. 26(5),p.1040~1047., 1992. Friedlander S.K.,Smoke Dust and Haze : Fundamentals of aerosol behavior, John Wiley and Sons, New York, 1976. German,R.M.,“Sintering Theory and Practice”, John Wiley & Sons, New York,p.1-2.,1996. Gerstle R.W., Albrinck D.N.,“Atmospheric Emissions of Metals from Sewage Sludge Incineration”,Journal of Air Pollution Control Association,Vol.32,No.11,p.1119~1123., 1982. Gurnham C.F.,“Chapter 19:metal finishing Products in industrial Wastewater control”,p.338-339.,chicago,Illinois:Department of CiVil Engineering Illinois Institute of technology, 1965. Hiraoka M., Takeda N.,“Behavior of Hazardous Substances in Stabilization and Solidification Processes of Industrial Wastes. R.B. Pojasek(ed)”, Toxic and Hazardous Waste Disposal,Vol.3,p.107~124., 1996. Ian B.,“Manifestation of Copper excess ”, Am.J. Clin. Nutr., 67,p.1069-1073,1998. Jackson L.P., Rohlik A.R.and Conway R.A.,“Hazardous and industrial Waste management and testing:third symposium”, ASTM Committee D-34 on Waste Disposal,Philadelphia,p.278-288.,1983. Jitka J., Tatana S. and Romana N.,“Recovery of Cu-Concentrates from Waste Galvanic Copper Sludges”,Hydrometallurgy,Vol.57, p77-84.,2000. Lagrea M.D.,Buckingham P.L.,Jeffrey C.,“Evans and the Environmental Resources Management Croup,”hazardous Waste Management, Publisher:McGraw Hill,1990. Leverton R.M.and Binkey, E.S.,“The Copper metabolinsm and requirement of young woman”,J.Nutr.,27,p.45-52.,1994. Liew A.G.,Idris A., Wong C.H.K., Samad A.A., Noor M.J.M.M., and Baki A.M.,“Incorporation of sewage sludge in clay brick and its characterization”, Waste Management and Research,Vol.22, p.226-233.,2004. Linak W.P., Peterson T.W.,“Effect of Coal Type and Residence Time on the Submicron Aerosol Distribution from Pulverized Coal Combustion”, Aerosol Science and Technology,Vol.3,p77~95., 1984. Lossin A. and Westhoff F.J.,“The Production and application Cuprous oxide and cupric hydroxide”,JOM,Vol.49,No.10, P.38-39.,1997. Mahata T., Sharma B.P., Nair S.R. and Parkash D., “Formation of aluminum titanate-mulite composite from bauxite red mud”,Metallurgical and Materials Transaction B,Vol31B, No.3.p.553.,2000. Manuel O.and Ricardo U.,“Copper as an essential nutritent ”,Am.J.Clin.Nutr.,63,p.791-796.,1996. Patterson,J.W. ,”Effect of carbonate ion on precipitation treatment of cadmium,copper,lean and zinc. Proceeding of 36th Annual Industrial weste Conference, Purdue University, p.579-602. Purdue University, west Lafayette University, Indiana.University,1981. Pigaga A., Selskis A., Pakstas V., Butkiene R. and Juskenas R.,“Simultaneous decontamination of copper ligand–containing solutions by mixing and precipitation”, Hydrometallurgy,Vol.79, p.89-96.,2005. Fjallborg B.,Dave G.,“Toxcity of Copper in sewage sludge ”,Environmental International,28,p.761-769.,2003. Queneau P.B.and Gruber R.W.,“The U.S.Production of Copper Chemicals from secondary and by-Product sources ”,JOM,Vol.49, No.10,p.34-37.,1997. Sengupta P.,Saikia N.and Borthakur P.C.,“Bricks from petroleum effluent treatment plant sludge:properties and environmental characteristics”, Journal of Environmental Engineering, Vol.128, p.1090-1094.,2002. Shie J.L., Lin J.P., Chang C.Y., Lee D.J. and Wu C.H.,“Pyrolysis of oil sludge with additives of sodium and potassium compounds”, Resources, Conservation and Recycling,Vol.39 p.51-64.,2003. Szente R.N., Bender, O.W., Schroeter, R.A. and Garcia, M.G., “Treating Electroplating Residues with Thermal Plasmas”,JOM, Vol.50,No.7,p32-35.,1998. Ugoji E.O.,“Anaerobic digestion of palm oil mill effluent and its utilization as fertilizer for environmental protection”, Renewable Energy,Vol.10,p.291-294.,1997. United States Patent and Trademark Office, United States Patent Application 20040079681, Recycle process for a metal bearing sludge concentrate, April 29, 2004. Weather J.and Ogada T.,“Sewage sludge combustion”,Progress in Energy and Combustion Science,Vol.25,p.55-166.,1999. Weng C.H.,Lin D.F.and Chiang P.C.,“Utilization of sludge as brick materials”, Advances in Environmental Research,Vol.7, p.679-685.,2003. Wei,Y.L. ,Yang,Y.W.; Cheng, N.“Study of thermally immobilized Cu in analogue minerals of contaminated soils.” Environ. Sci. Technol., 35, p. 416-421., 2001 Winfried R., Heinich M., Roland M. P. and Alexandra B., “Kiese lguhr sludge form the deep bed filtration of beverages as a source for silicon in the production of calcium silicate bricks“, Journal of the European Ceramic Society Vol.26,p.2547-2559.,2006. Wunsch P., Greilinger C., Bieniek D.,“Investigation of the Binding of Heavy Metals in Thermally Treated Residues from Waste Incineration”, Chemosphere, Vol. 32, p.2211~2218., 1996.
摘要: 
95年至96年10月間,國內重金屬含銅污泥產生量約為428376.41噸。
以目前處理銅污泥的主要方法為銅回收再用之方式。但經由回收處理後的銅污泥中會剩餘少部份的銅金屬,故此該剩餘的部份需要作適當的處理。而熱處理就是其中一個方式。因為高溫作用,致使會有些例如氣狀跟粒狀污染物會在此熱處理過程中被釋出。
此研究的目標是評估銅金屬在熱處理銅污泥底渣中所釋放出的逸散物。研究所用的銅污泥是類似於工廠污泥之性質。實驗參數包括溫度、旋窯轉速以及銅的含量。而熱處理的儀器是旋轉窯。熱處理後的銅污泥底渣也將進行TCLP試驗的測試。且熱處理後之銅污泥底渣的TCLP 濃度可用來分辨是否屬於有害物質的指標。
根據實驗結果,在熱處理過程中影響固/氣相之銅逸散時的主要因子為溫度。無論在氣相或固相中,銅逸散物的濃度會隨著溫度的升高而減少並被完全的包封住。而其他變數也可以影響銅逸散物的濃度。當旋窯轉速減緩時,不但能增加銅污泥燒結物的機率並可以縮小銅污泥底渣表面的孔隙,而固/氣相逸散比例則顯示出因高溫下粒子傳曳作用反應較明為顯並且使固相逸散的比例增加。因此,在固相的狀態下可輕易的收集到粒狀物並使銅逸散物的濃度增加。而在不同的銅含量方面,當銅含量增加時在固相的銅逸散物濃度亦會增加,但在氣相時銅濃度則沒有顯著不同。因此,大部分的銅仍然存在於熱處理銅污泥底渣中。另在TCLP溶出濃度部分中,熱處理後之銅污泥底渣的TCLP溶出濃度是隨著溫度的增加及旋窯轉速的減緩而減少。熱處理後之銅污泥底渣的TCLP溶出濃度並沒有超出台灣環保署的規定標準。因此,銅污泥在經過熱處理後可被視為非有害物質。

The amount of domestic heavy mental copper sludge was about 428376.41 tonne in October between 2006 to 2007.The copper recovery was a major method to treat the enriched copper sludge, but the residual of treated copper sludge had a litte part of copper. The residual part needed to do proper treatment; the thermal treatment was one of proper methods. Due to high temperature, some parts of pollutant, such as gas and particle, would be emitted during thermal treatment process.
The aim of this study was to evaluate the emission of copper metal during thermal treatment of copper sludge. The copper sludge in this study simulated to the manufactory sludge. The experimental parameters included temperature, the speed of rotary kiln and the copper content. The apparatus of thermal treatment was rotary kiln. The toxicity characterization leaching procedure (TCLP) of thermally treated copper sludge slag was also measured. TCLP concentration of thermally treated copper sludge slag was an index to classify it belonged to the hazardous materials or not.
According the experimental results, the main factor which influence the emission concentration of copper in solid and gas phase during thermal treatment process was temperature. No matter in gas or solid phase, the emission concentration of copper was decreased and the encapsulation became completely as the temperature increased. The other parameters also could influence the concentration of copper emission. When the operational speed of rotary kiln became slow, the sintering level of copper sludge was increased and could reduce the pore size of surface in the thermally treated copper sludge slag. The ratio of solid /gas phase indicated that the entrainment reaction was significant at high temperature and made the ratio increased. Therefore, the particle in the solid phase was easily caught and the concentration of copper emission in the solid phase increased. In the different copper content section, the emission concentration of copper in the solid phase was increased when the copper content was increased. But the concentration of copper in the solid phase did not have significant difference under different copper content. However, there were a lot of parts copper still existed in the thermally treated copper sludge slag. In TCLP leaching concentration, the TCLP leaching concentration of the thermally treated copper sludge slag was decreased when the temperature increased and the rotary kiln speed decreased. The TCLP leaching concentration of the thermally treated copper sludge slag did not exceed the regulation of Taiwan EPA. Therefore, the copper sludge was regard as non-hazardous materials after thermal treatment.
URI: http://hdl.handle.net/11455/5450
其他識別: U0005-2108200810225800
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.