Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5461
標題: 利用生物功能化奈米粒子快速偵測結核桿菌
Rapid detection of mycobacteria using biofunctionalized nanoparticles and flow cytometry
作者: 邱天安
Chiu, Tien-An
關鍵字: quantum dot;量子粒;mycobacteria;flow cytometry;結核桿菌;流式細胞儀
出版社: 環境工程學系所
引用: 中文部分 1.馮榮豐、陳錫添編著(2003) 奈米工程概論,全華科技圖書股份有限。 2.馬遠榮(2004) 低微奈米材料,科學發展股份有限公司。 3.林銘杰(2002) 量子粒,科學發展股份有限公司。 4.彭國勝,王振宇,羅慧娟(2003) 奈米科技與檢測技術,全華科技圖書股份有限公司。 5.沈光漢,張開明,施純明,許正園(2001) 非結核分枝桿菌肺病的臨床診斷與治療,科學雜誌。 6.謝世良(2002) 流式細胞儀技術。 7.洪俊雄,林蕙俞,許淑娟,王郁芬(2007) 飲用水中非結核性分枝桿菌之分子生物技術快速鑑定,興大工程學刊 第十八卷 第三期。 8.王郁芬(2005) 以PCR-DGGE方法分析環境中非結核分枝桿菌,國立中興大學環境工程系碩士論文。 英文部份 1.Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P., & Waggoner, A. S. (2004). Noninvasive imaging of quantum dots in mice. Bioconjugate Chemistry, 15(1), 79-86. 2.Bennett, E. O. (1972). The biology of metalworking fluids. Lubrication Engineering 112(28), 237-247. 3.Bernstein, D. I., Lummus, Z. L., Santilli, G., Siskosky, J., & Bernstein, I. L. (1995). Machine operator''s lung. A hypersensitivity pneumonitis disorder associated with exposure to metalworking fluid aerosols. Chest, 108(3), 636-641. 4.Black, W. C., & Berk, S. G. (2003). Cooling towers--a potential environmental source of slow-growing mycobacterial species. AIHA Journal : A Journal for the Science of Occupational and Environmental Health and Safety, 64(2), 238-242. 5.Bracker, A., Storey, E., Yang, C., & Hodgson, M. J. (2003). An outbreak of hypersensitivity pneumonitis at a metalworking plant: A longitudinal assessment of intervention effectiveness. Applied Occupational and Environmental Hygiene, 18(2), 96-108. 6.Brown, W. L., (1999). Metalworking fluids. In Synthetic lubricants and high-performance functional fluids. pp. 625-668. Edited by Rudnick, L. R., Shubkin, R.L. New York, NY, Marcel Dekker, Inc. 7.Chan, W. C., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science (New York, N.Y.), 281(5385), 2016-2018. 8.Chang, S. C. (2005). Rapid Detection and Enumeration of Mycobacteria in Metalworking Fluids: Technology Development and Validation, ph.D. Dissertation. University of Michigan at Ann Arbor, Michigan, U.S.A. 9.Chang, S. C., Rihana, A., Bahrman, S., Gruden, C. L., Khijniak, A. I., & Skerlos, S. J. (2004). Flow cytometric detection and quantification of mycobacteria in metalworking fluids. International Biodeterioration & Biodegradation, 54(2-3), 105-112. 10.Chang, S. C., Anderson, T. I., Bahrman, S. E., Gruden, C. L., Khijniak, A. I., & Adriaens, P. (2005). Comparing recovering efficiency of immunomagnetic separation and centrifugation of mycobacteria in metalworking fluids. Journal of Industrial Microbiology & Biotechnology, 32(11-12), 629-638. 11.Cotner, J. B., Ogdahl, M. L., & Biddanda, B. A. (2001). Double-stranded DNA measurement in lakes with the fluorescent stain PicoGreen and the application to bacterial bioassays. Aquatic Microbial Ecology, 25(1), 65-74. 12.Covert, T. C., Rodgers, M. R., Reyes, A. L., & Stelma Jr, G. N. (1999). Occurrence of nontuberculous mycobacteria in environmental samples. Applied and Environmental Microbiology, 65(6), 2492. 13.Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., & Ober, R. (1997). ZnS core-shell quantum dots: Synthesis and optical and structural characterization of a size series of highly luminescent materials. J.Phys.Chem.B, 101, 9463–9475. 14.Dailloux, M., Albert, M., Laurain, C., Andolfatto, S., Lozniewski, A., & Hartemann, P. (2003). Mycobacterium xenopi and drinking water biofilms. Applied and Environmental Microbiology, 69(11), 6946. 15.Dailloux, M., Laurain, C., Weber, M., & Hartemann, P. (1999). Water and nontuberculous mycobacteria. Water Research, 33(10), 2219-2228. 16.Dangman, K. H., Cole, S. R., Hodgson, M. J., Kuhn, C., Metersky, M. L., & Schenck, P. (2002). The hypersensitivity pneumonitis diagnostic index: Use of non-invasive testing to diagnose hypersensitivity pneumonitis in metalworkers. American Journal of Industrial Medicine, 42(2), 150-162. 17.Derfus, A. M., Chan, W. C. W., & Bhatia, S. N. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 4(1), 11. 18.Desjardin, L., Chen, Y., Perkins, M., Teixeira, L., Cave, M., & Eisenach, K. (1998). Comparison of the ABI 7700 system (TaqMan) and competitive PCR for quantification of IS6110 DNA in sputum during treatment of tuberculosis. Journal of Clinical Microbiology, 36(7), 1964. 19.Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., & Becker, S. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. New England Journal of Medicine, , 307471. 20.Dwarakanath, S., Bruno, J. G., Shastry, A., Phillips, T., John, A. A., & Kumar, A. (2004). Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochemical and Biophysical Research Communications, 325(3), 739-743. 21.Dybiec, M., Chornokur, G., Ostapenko, S., Wolcott, A., Zhang, J. Z., & Zajac, A. (2007). Photoluminescence spectroscopy of bioconjugated CdSe∕ ZnS quantum dots. Applied Physics Letters, 90, 263112. 22.Emtiazi, F., Schwartz, T., Marten, S. M., Krolla-Sidenstein, P., & Obst, U. (2004). Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration. Water Research, 38(5), 1197-1206. 23.Falkinham III, J. O., Norton, C. D., & LeChevallier, M. W. (2001). Factors influencing numbers of mycobacterium avium, mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Applied and Environmental Microbiology, 67(3), 1225. 24.Gilligan, P. H. (1991). Microbiology of airway disease in patients with cystic fibrosis. Clinical Microbiology Reviews, 4(1), 35-51. 25.Green, N. M. (1990). Avidin and streptavidin. Methods in Enzymology, 184, 51-67. 26.Havelaar, A. H., Berwald, L. G., Groothuis, D. G., & Baas, J. G. (1985). Mycobacteria in semi-public swimming-pools and whirlpools. Zentralblatt Fur Bakteriologie, Mikrobiologie Und Hygiene.1.Abt.Originale B, Hygiene, 180(5-6), 505-514. 27.Heginbothom, M. L., Magee, J. T., & Flanagan, P. G. (2003). Evaluation of the idaho technology LightCycler PCR for the direct detection of mycobacterium tuberculosis in respiratory specimens. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union Against Tuberculosis and Lung Disease, 7(1), 78-83. 28.Hermanson, G. T. (1996). Bioconjugate techniques New York. 29.Hilborn, E. D., Covert, T. C., Yakrus, M. A., Harris, S. I., Donnelly, S. F., & Rice, E. W. (2006). Persistence of nontuberculous mycobacteria in a drinking water system after addition of filtration treatment. Applied and Environmental Microbiology, 72(9), 5864-5869. 30.Hill, E. C. (1977). Microbial infection of cutting fluids. Tribology Int., 10(1), 49-54. 31.Hoshino, A., Fujioka, K., Manabe, N., Yamaya, S., Goto, Y., & Yasuhara, M. (2005). Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiology and Immunology, 49(5), 461-470. 32.Iivanainen, E. K., Martikainen, P. J., Vaananen, P. K., & Katila, M. L. (1993). Environmental factors affecting the occurrence of mycobacteria in brook waters. Applied and Environmental Microbiology, 59(2), 398-404. 33.Independent Lubricant Manugacture Association. (2000). ILMA Report. Lubricants World, (10). 34.Khan, I. U., & Yadav, J. S. (2004). Real-time PCR assays for genus-specific detection and quantification of culturable and non-culturable mycobacteria and pseudomonads in metalworking fluids. Molecular and Cellular Probes, 18(1), 67-73. 35.Kim, B. J., Lee, K. H., Park, B. N., Kim, S. J., Bai, G. H., & Kim, S. J. (2001). Differentiation of mycobacterial species by PCR-restriction analysis of DNA (342 base pairs) of the RNA polymerase gene (rpoB). Journal of Clinical Microbiology, 39(6), 2102. 36.Kim, S., & Bawendi, M. G. (2003). Oligomeric ligands for luminescent and stable nanocrystal quantum dots. Journal of the American Chemical Society, 125(48), 14652-14653. 37.Kox, L. F., Jansen, H. M., Kuijper, S., & Kolk, A. H. (1997). Multiplex PCR assay for immediate identification of the infecting species in patients with mycobacterial disease. Journal of Clinical Microbiology, 35(6), 1492-1498. 38.Kraus, G., Cleary, T., Miller, N., Seivright, R., Young, A. K., & Spruill, G. (2001). Rapid and specific detection of the mycobacterium tuberculosis complex using fluorogenic probes andreal-time PCR. Molecular and Cellular Probes, 15(6), 375-383. 39.Kreiss, K., & Cox-Ganser, J. (1997). Metalworking fluid-associated hypersensitivity pneumonitis: A workshop summary. American Journal of Industrial Medicine, 32(4), 423-432. 40.Larson, D. R., Zipfel, W. R., Williams, R. M., Clark, S. W., Bruchez, M. P., & Wise, F. W. (2003). Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science (New York, N.Y.), 300(5624), 1434-1436. 41.Le Dantec, C., Duguet, J. P., Montiel, A., Dumoutier, N., Dubrou, S., & Vincent, V. (2002). Occurrence of mycobacteria in water treatment lines and in water distribution systems. Applied and Environmental Microbiology, 68(11), 5318. 42.Makrides, S. C., Gasbarro, C., & Bello, J. M. (2005). Bioconjugation of quantum dot luminescent probes for western blot analysis. BioTechniques, 39(4), 501-506. 43.Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., & Li, J. J. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), 538-544. 44.Moore, J. S., Christensen, M., Wilson, R. W., Wallace, R. J.,Jr, Zhang, Y., & Nash, D. R. (2000). Mycobacterial contamination of metalworking fluids: Involvement of a possible new taxon of rapidly growing mycobacteria. AIHAJ : A Journal for the Science of Occupational and Environmental Health and Safety, 61(2), 205-213. 45.Muilenberg, M. L., Burge, H. A., & Sweet, T. (1993). Hypersensitivity pneumonitis and exposure to acid-fast bacilli in coolant aerosols. J Allergy Clin Immunol, 911, 311. 46.Nebe-von-Caron, G., Stephens, P. J., Hewitt, C. J., Powell, J. R., & Badley, R. A. (2000). Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42(1), 97-114. 47.Newton, G. L., & Fahey, R. C. (2002). Mycothiol biochemistry. Archives of Microbiology, 178(6), 388-394. 48.O''Mahony, J., & Hill, C. (2004). Rapid real-time PCR assay for detection and quantitation of mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk. Applied and Environmental Microbiology, 70(8), 4561. 49.O''Mahony, J., & Hill, C. (2002). A real time PCR assay for the detection and quantitation of mycobacterium avium subsp. paratuberculosis using SYBR green and the light cycler. Journal of Microbiological Methods, 51(3), 283-293. 50.Ormerod, M. G. (2002). Flow cytometry Oxford University Press New York. 51.Ozanne, V., Ortalo-Magne, A., Vercellone, A., Fournie, J. J., & Daffe, M. (1996). Cytometric detection of mycobacterial surface antigens: Exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. Journal of Bacteriology, 178(24), 7254-7259. 52.Passman, F. J., & Rossmoore, H. W. (2002). Reassessing the health risks associated with employee exposure to metalworking fluid microbes. Lubr Engg, 58, 30-38. 53.Pierres, A., Touchard, D., Benoliel, A. M., & Bongrand, P. (2002). Dissecting streptavidin-biotin interaction with a laminar flow chamber. Biophysical Journal, 82(6), 3214-3223. 54.Prescott, L. M., Harley, J. P., & Klein, D. A. (1990). Microbiology, wm. C. 55.Reiss, P., Bleuse, J., & Pron, A. (2002). Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett, 2(7), 781. 56.Rossmoore, H. W. (1995). Microbiology of metalworking fluids: Deterioration, disease and disposal. Lubrication Engineering, 51(2), 112-118. 57.Rossmoore, H. W., Holtzman, G. H., & Kondek, L. (1976). Microbial ecology with a cutting edge. Proceedings of the Third International Biodegradation Symposium.Applied Science Publishers, London, UK, 58.Roth, A., Fischer, M., Hamid, M. E., Michalke, S., Ludwig, W., & Mauch, H. (1998). Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. Journal of Clinical Microbiology, 36(1), 139. 59.Roth, A., Reischl, U., Streubel, A., Naumann, L., Kroppenstedt, R. M., & Habicht, M. (2000). Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. Journal of Clinical Microbiology, 38(3), 1094. 60.Sapsford, K. E., Pons, T., Medintz, I. L., & Mattoussi, H. (2006). Biosensing with luminescent semiconductor quantum dots. Sensors, 6, 925-953. 61.Skerlos, S. J., Adriaens, P., Hayes, K., Rihana, A., Kurabayashi, K., & Takayama, S. (2001). Challenges to achieving sustainable aqueous systems: A case study in metalworking fluids. Proceedings of the Second International Symposium on Inverse Manufacturing, , 13–16. 62.Skuce, R. A., McCorry, T. P., McCarroll, J. F., Roring, S. M., Scott, A. N., & Brittain, D. (2002). Discrimination of mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology (Reading, England), 148(2), 519-528. 63.Springer, B., Stockman, L., Teschner, K., Roberts, G. D., & Bottger, E. C. (1996). Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods. Journal of Clinical Microbiology, 34(2), 296-303. 64.Stach, E. M., & Bull, A. T. (2005). Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek, 87(1), 3-9. 65.Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., & Oleinikov, V. (2004). Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Analytical Biochemistry, 324(1), 60-67. 66.Tortora, G. J. (1986). Microbiology: An introduction Benjamin-Cummings Publishing Company. 67.Tortra, G. J., Funke, B. R., & Case, C. L. (1992). Antimicrobial drugs. Microbiology.Redwood, Calif: The Benjamin/Cummings Publishing Co, 81(8), 496–498. 68.Torvinen, E., Suomalainen, S., Lehtola, M. J., Miettinen, I. T., Zacheus, O., & Paulin, L., (2004). Mycobacteria in water and loose deposits of drinking water distribution systems in finland. Applied and Environmental Microbiology, 70(4), 1973. 69.Trout, D., Weissman, D. N., Lewis, D., Brundage, R. A., Franzblau, A., & Remick, D. (2003). Evaluation of hypersensitivity pneumonitis among workers exposed to metal removal fluids. Applied Occupational and Environmental Hygiene, 18(11), 953-960. 70.Tsitko, I., Rahkila, R., Priha, O., Ali-Vehmas, T., Terefework, Z., & Soini, H. (2006). Isolation and automated ribotyping of mycobacterium lentiflavum from drinking water distribution system and clinical specimens. FEMS Microbiology Letters, 256(2), 236-243. 71.Vaerewijck, M. J., Huys, G., Palomino, J. C., Swings, J., & Portaels, F. (2005). Mycobacteria in drinking water distribution systems: Ecology and significance for human health. FEMS Microbiology Reviews, 29(5), 911-934. 72.Wallace Jr, R. J., Zhang, Y., Wilson, R. W., Mann, L., & Rossmoore, H. (2002). Presence of a single genotype of the newly described species mycobacterium immunogenum in industrial metalworking fluids associated with hypersensitivity pneumonitis. Applied and Environmental Microbiology, 68(11), 5580. 73.Watt, W. D. (2003). Observations on the relationship between triazines and mycobacteria in metal removal fluids. Applied Occupational and Environmental Hygiene, 18(11), 961-965. 74.Weinbauer, M. G., Beckmann, C., & Hofle, M. G. (1998). Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Applied and Environmental Microbiology, 64(12), 5000. 75.Weiss, L., Pue, C., Rossmore, H. W., Fink, J., Harney, J., & Trout, D. (2001). Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous Mycobacteria—Ohio, 2001. J Am Med Assoc, 287(2), 3073-3074. 76.Wilson, R. W., Steingrube, V. A., Bottger, E. C., Springer, B., Brown-Elliott, B. A., & Vincent, V. (2001). Mycobacterium immunogenum sp. nov., a novel species related to mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: An international cooperative study on mycobacterial taxonomy. International Journal of Systematic and Evolutionary Microbiology, 51(5), 1751-1764. 77.Xing, Y., Chaudry, Q., Shen, C., Kong, K. Y., Zhau, H. E., & Chung, L. W. (2007). Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nature Protocols, 2(5), 1152-1165. 78.Yi, W. C., Hsiao, S., Liu, J. H., S. C., Horng, Y. T., Tsai, W. C., Lai, H. C., Teng, L. J., Hsueh, P. R., Hsieh, R. F., Luh, K. T. & HoS, W. (1998). Use of fluorescein labeled antibody and fluorescence activated cell sorter for rapid identification of Mycobacterium species. Biochemical and Biophysical Research Communications 250(12), 403-408. 79.Yu, W. W., Chang, E., Drezek, R., & Colvin, V. L. (2006). Water-soluble quantum dots for biomedical applications. Biochemical and Biophysical Research Communications, 348(3), 781-786. 網頁資料 1.http://www.evidenttech.com/ Evident Technology
摘要: 
自從19世紀德國柯霍博士發現了結核桿菌,人們開始重視這流行千年的疾病。經研究發現環境中的水體、食物、氣膠、落塵、泥土中皆有結核桿菌的存在。在1995年,全球共有三百一十萬人死於結核病;而在台灣地區,結核病為前十五大死因中的第十二位。
Mycobacterium immunogenum 為結核桿菌屬之一種,近來被發現是會引起過敏性肺炎的機會性致病菌,且類似菌種被發現存在於游泳池、飲用水配水系統、溫泉浴場(SPA)、金屬切削液製程等。
因此快速檢測及準確的鑑別環境中之結核桿菌(Mycobacteria)是非常重要的。但是,由於結核桿菌通常生長緩慢且容易聚集,以傳統的方式鑑定或量化時,很容易被忽略或低估其數量。若缺乏適當的前處理,準確的量測是相當困難的。在一些較複雜的系統中,如沉澱池水樣與金屬切削液中,使用光學儀器直接去偵測,可能發生嚴重之光學干擾而影響偵測結果。
本研究採用超音波震盪分散之前處理,並藉由流式細胞儀、生物功能化量子粒(Biofunctionalized quantum dot),以快速偵測結核桿菌,檢測時間約三小時比傳統耗時4 ~ 6天的培養方法縮短約96 ~ 97%。從實驗結果中,可以發現利用流式細胞儀配合生物功能化量子粒,可有效降低螢光干擾及維持較高之專一性,應用於結核桿菌的鑑別是確實可行的。此研究利用隨機性抗體結合方式,比較改良式免疫螢光法與生物功能化量子粒之標定率及專一性。本研究方法除可應用於結核桿菌檢測之外,也可應用於其他容易聚集及形成生物膜的微生物之快速偵測。

After Dr. Robert Koch found mycobacteria in 19th century, the world started to pay attention of this bacterial species. Environmental mycobacteria are common in all natural ecosystems, including water, soils, foods, dusts, and aerosols. In 1995, there were three million and five hundred thousand people died because of tuberculosis. It is also the top 12th death cause in Taiwan. Mycobacteria are the most likely causative agents for human pulmonary disease in metalworkers and have been found in drinking water distribution systems, water damaged buildings, SPAs or swimming pools, cooling tower, and metalworking fluids. From an environmental health perspective, it is imperative to accurately identify and quantify mycobacteria in environmental samples. However, they are slow growing and traditional culturing methods usually take days to weeks for identification and quantification. Therefore, they are easily underestimated or neglected. Furthermore, due to their aggregate-forming characteristics in environmental samples, without proper pretreatment, accurate and consistent identification and enumeration is impossible. If they are in complex matrices, such as metalworking fluids or sediments, direct optical detection is severely hindered. In this study, by employing probe sonication, flow cytometry and biofunctionalized quantum dots, labeling efficiency and specificity between a modified immunofluorescence method and a biofunctionalized quantum dot method were compared. By using biofunctionalized quantum dot, the turn-around time has been shortened more than 95%. These results strongly suggested that coupling flow cytometry with biofunctionalized quantum dots is a feasible method on rapid detection, identification, and quantification of mycobacteria and other aggregate forming bacteria in complex matrices.
URI: http://hdl.handle.net/11455/5461
其他識別: U0005-2208200817094200
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.