Please use this identifier to cite or link to this item:
標題: 以化學氣相沈積法製備CNTs-TiO2複合材料去除氣相丙酮之研究
Fabrication of CNTs/TiO2 Nanocomposite via Modified Chemical Vapor Deposition Method for Acetone Removal from Air Sterams
作者: 葉益華
Yeh, Yi-Hua
關鍵字: carbon nanotube;奈米碳管;titanium dioxide;nanocomposite;chemical vapor deposition;光觸媒;複合材料;化學氣相沉積
出版社: 環境工程學系所
引用: Agnihotri, S., Rood, M.J.,Rostam-Abadi, M.,”Adsorption equilibrium of organic vapors on single-walled carbon nanotubes.” Carbon, 2005. Vol.43: p.2379. Alberici, R.M.,Jardim, W.F.,”Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide.” Applied Catalysis B:Environmental, 1997. Vol.14: p.55. Bacsa, R.R., Kiwi, J., “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid”, Applied Catalysis B: Environmental, 1998. Vol.16,( 1): p.19-29. Backman U., Auvinen A., Jokiniemi J. K., “Deposition of nanostructured titania films by particle-assisted MOCVD.” Surface & Coatings Technology, 2005. Vol.192: p.81- 87. Bai, H.L., Chen, C.C., Lin, C.S., Den, W.,Chang, C.L.,”Monodisperse nanoparticle synthesis by an atmospheric pressure plasma process: An example of a visible light photocatalyst.” Industrial & Engineering Chemistry Research, 2004. Vol.43(22): p.7200. Bosc, F., Edwards, D., Keller, N., Keller, V., Ayral, A.,”Mesoporous TiO2-based photocatalysts for UV and visible light gas-phase toluene degradation.” Thin Solid Films, 2006. Vol.495: p.272-279. Byrappa, K., Dayananda, A.S., Sajan, C.p., Basavalingu, B., Shayan, M.B., Soga, K., Yoshimura, M.,” Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications” J Mater Sci, 2008. Vol.43: p.2348–2355 Chiu, H.–T.,J. Chin. Chem. Soc., 1998. Vol.56: p. 117. Chang, C.P., Chen, J.N., Lu, M.C.,Yang, H.Y., “Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst.” Chemosphere, 2005. Vol.58: p.1071. Cot, F., Larbot, A., Nabias, G. and Cot, L., “Preparation andCharacterization of Colloidal Solution Derived Crystallized TitaniaPowder.” Journal of the European Ceramic Society, 1998. Vol.18: p.2175-2181. Diebold, U., “The Surface Science of Titanium Dioxide,” Surf. Sci. Rep., 2003. Vol.48: p.53-239. Eswaramoorthy, M., R. Sen, C.N.R. Rao,“A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors.” Chemical Physics Letters, 1999. Vol.304: p.207. Hashimoto, K., Wasada, K.; Osaki, M., Shono, E.; Adachi, K., Toukai, N. and Kera, Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, 2001. Vol.30: p.429-436. Herrmann, J. M.,”Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants.” Catal. Today, 1999. Vol.53: p.115-129. Hsu, S., Lee, M.,Lu, C. Adsorption of Isopropyl Alcohol by Carbon Nanotube. 98th Annual Conference of the Air and Waste Management Association. 2005. Hung, C. H., Marinas, B. J.,”Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films.” Env. Sci. & Tech., 1997. Vol.31: p.1440. Hou, H., Miyafuji, H., Kawamoto, H., Saka, S.,” Supercritically treated TiO2-activated carbon composites for cleaning ammonia.” J Wood Sci, 2006. Vol.52: p.533-538 Iijima, S., “Helical microtubules of graphitic carbon” Nature, 1991. Vol.354: p.56. Ivanda, M., Music, S., Popovic, S.,Gotic, M., “XRD、Raman and FT-IR spectroscopic observations of nano size TiO2 synthesized by the sol-gel method based on an esterification reaction.” Journal of Molecular Structure, 1999. Vol.480-481: p.645. Kang, M., Lee, J. H., Lee, S.H., Chung, C.H., Yoon, K. J., Ogino, K., Miyata, S., Choung, S.J., “Preparation of TiO2 film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT-IR spectroscopy.” Journal of Molecular Catalysis A: Chemical 2003. Vol.193: p.283. Kim, E.K., Son, M.H., Min, S.K., Han, Y.K. and Yom, S.S., “Growth of highly oriented TiO2 thin films on InP(100) substrates by metalorganic chemical vapor deposition.” J. Cryst. Growth., 1997 Vol.170 : p.803-807. Kishimoto, H. ; Takahama, K.; Hashimoto, N.; Aoi, Y.; “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD). ” J.Mater. Chem., 1998 Vol.8: p.2019-2024. Ku, Y., Ma, C.M., Shen, Y.-S., “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile.” Applied Catalysis B: Environmental, 2001. Vol.34: p. 181-190 Lars, A.; Alison, M., “Surface Vacancies in CVD Diamond.” Diamond and Related Materials, 1998 Vol.7: p.261-265. Lee, S. Y., Parka, J., Jooa, H., ”Visible light-sensitized photocatalyst immobilized on beads by CVD in a fluidizing bed.” Solar Energy Materials & Solar Cells 2006. Vol.90: p.1905–1914. Liu, S.X., Chen1, X.Y., Chen1, X..,” A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method.” Journal of Hazardous Materials, 2007. Vol.143: p.257–263 Liao, Q., Sun, J., Gao, L., “Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3.” Carbon, 2007. Liu, J.-M., Li, L., Fan, H.-L., Ning, Z.-W., Zhao, P., ”Evaluation of Single-walled Carbon Nanotubes as Novel Adsorbent for Volatile Organic Compounds.” Journal of Analytical Chemistry, 2007. Vol.35:p.830-834. Liu, C.C., Hsieh, Y.H., Lai, P.F., Li, C.H.,Kao, C.L., “Photodegradation treatment of azo dye wastewater by UV/TiO2 process.” Dyes and Pigments, 2006. Vol.68(2-3): p.191. Li, Y., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D., Wei, B., ”Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes.” Chemical Physics Letters, 2001. Vol.350: p.412. Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D.,Wei, B., “Lead adsorption on carbon nanotubes.” Chemical Physics Letters, 2002. Vol.357: p.263. Lu, C., Chiou, F., “Adsorption of zinc (II) from water with purified carbon nanotubes. “ Chemical Engineering Science, 2006. Vol.61/4: p.1138. Lu, C., Chung, Y.L., Chang, K.F., “Adsorption of Trihalomethanes from Water with Carbon Nanotubes.” Water Research 39, 2005. Vol.6: p.1183. Lo, S.C., Lin, C.F., Wu, C.H.,Hsieh, P.H., ”Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol.” Journal of Hazardous Materials, 2004. Vol.B114: p.183. Long, R.Q., Yang, R.T., “Carbon nanotubes as superior sorbent for dioxin removal.“ Journal of American Chemical Society, 2001. Vol.123: p.2058. Martı´neza, A.I., Acostaa, D.R., Cedillo, G.,”Effect of SnO2 on the photocatalytical properties of TiO2 films.” Thin Solid Films, 2005. Vol.490: p.11-123. Mills, A. and Hunte, S.L., “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology, A:Chemistry, 1997. Vol.108(1): p. 1-35. Music, S., “Chemical and microstructural properties of TiO2 synthesized by sol-gel procedure.” Materials Science and Engineering: B, 1997. Vol.47: p.33. Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P. “Molecular dynamics simulation of mechanical, vibrational andelectronicproperties of carbon nanotubes” Computational Materials Science, 2000. Vol.17: p.352-355. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B.,Jia, Z., “Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes.” Chemical Physics Letters, 2003. Vol.376: p.154. Sekiguchi K., Yamamoto K., Sakamoto K., “Photocatalytic degradation of gaseous toluene in an ultrasonic mist containing TiO2 particles.” Catalysis Communications 2008. Vol.9: p.281–285. Shelimov, K.B., Esenaliev, R.O.,Rinzler, A.G., “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”, Chemical Physical Letters, 1998. Vol.282: p.429. Shalinia K., Chandrasekaranb S., Shivashankar S.A.,”Growth of nanocrystalline TiO2 films by MOCVD using a novel precursor.” Journal of Crystal Growth, 2005. Vol.284: p.388–395 Shih, Y.-h. , Li M.-s., ”Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.” Journal of Hazardous Materials, 2007. Sone H., Fugetsu B., Tsukada T., Endo M., ”Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes.” Talanta 2007. Takafumi, S., Manabu, S., Kikno, O., “Evaluation of sintering ofnanometer-sized titania using aerosol method.” Aerosol Sci. & Tech, 1995. Vol.23: p.183-200. Tohji, K., Goto, T.,Takahashi, H., ”Purifying single-walled carbon nanotubes.” Nature, 1996. Vol.383: p.679. Vassilev, S. V., Kitano, K., Takeda, S.Tsurue, T., ”Influence of mineral and chemical composition of coal ashes on their fusibility.” Fuel Processing Technology, 1995. Vol.45: p.27-51. Wang, M., Li, F.,Zhang, R., “Study on catalytic hydrogenation properties and thermal stability of amorphous NiB alloy supported on carbon nanotubes.” Catalysis Today, 2004. Vol.93-95: p.603. Wang, W., Serp, P., Kalck, P., Silva, C.G., Faria, J.L., ”Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications.” Materials Research Bulletin, 2008. Vol. 43: p.958-967 Wu, C.H., Chang-Chien, G.P., Lee, W.S., “Photodegradation of polychlorinated dibenzo-p-dioxins: comparison of photocatalysts.” Journal of Hazardous Materials, 2004. Vol.B114: p.191. Yamashita, H., Harada, M., Tanil, A., ”Preparation of efficient titanium oxide photocatalysts by an ionized cluster beam (ICB) method and their photocatalytic reactivities for the purificationof water.” Catalysis Today, 2000. Vol.63: p.63-69. Yoldas, B. E., “Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters.” J. Mater. Sci., 1986 Vol.21: p.1087. Yu, Y., Yu, J. C., Yu, J.G., Kwok, Y.-C., Che, Y.-K., Zhao, J.-C., Lu, D., Ge, W.-K.,Wong, P.-K., ”Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes.” Applied Catalysis A, 2005. Vol.289: p.186–196. Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K.,Wong, P.K., ”Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye.” Applied Catalysis, 2005. Vol.61: p. 1. Zhang X., Zhou Mi., Lei L., “Preparation of an Ag–TiO2 photocatalyst coated on activated carbon by MOCVD.” Materials Chemistry and Physics, 2005. Vol.91: p. 73–79. Zhao, J., Buldum, A., Han, J., Lu, J. P., "Gas molecule adsorption in carbon nanotubes and nanotube bundles." Nanotechnology, 2002. Vol.13: p.195 Zuo G.-M., Cheng Z.-X. , Chen H., Li G.-W., Miao T., ”Study on photocatalytic degradation of several volatile organic compounds.” Journal of Hazardous Materials, 2006. Vol.B128: p.158–163. Kuo C.-S., Tseng1 Y.-H., Huang C.-H., Huang Y.-L., Liu S-L, Li Y.-Y., “Carbon-containing Nano-titania Prepared by Chemical Vapor Deposition and its Visible-light-responsive Photocatalytic Activity.” 第四屆環境保護與奈米科技學術研討會. 2007 洪肇嘉, 蔡正國,謝淑惠. “複合奈米碳管吸附重金屬之模式特性探討.” 第二屆環境保護與奈米科技學術研討會. 2005. 楊金鐘,李權家. “披覆奈米級二氧化鈦之無機管狀濾膜製備.” 第二屆環境保護與奈米科技學術研討會. 2005 林亮毅, 白曛綾. “Ti-MCM-41分子篩光觸媒同時處理VOCs 及NOx 之研究.” 第二十四屆空氣污染控制技術研討會. 2007 彭依偉, 羅卓卿, 王大昌, 李宛樺, 袁中新, 李家偉, 洪崇軒. “結合奈米光觸媒與活性碳紙纖濾網處理室內揮發性有機污染物.” 第二十四屆空氣污染控制技術研討會. 2007 白崢鈺, 謝哲隆. “複合奈米金屬銀光觸媒結合UVA 及UVC 光催化氧化甲苯反應動力.” 第四屆環境保護與奈米科技學術研討會. 2007 巫菁芳, 林家欣, 白曛綾. “光觸媒二氧化鈦覆載銀擔體高分散性複合物處理丙酮之研究.” 第四屆環境保護與奈米科技學術研討會. 2007 張志平, 尤建華. “TiO2/UV及太陽光程序對油氣有機污染物的控制研究.” 第二十四屆空氣污染控制技術研討會. 2007 羅卓卿, 袁中新, 洪崇軒. “利用不同光源在TiO2及ZrO2光觸媒下進行光催化還原二氧化碳之研究.” 第二十四屆空氣污染控制技術研討會. 2007 劉靜芳, 蔡政諺,席行正, 陳國仁. “利用電漿火炬氣凝系統合成TiO2-xNx 可見光型光觸媒.” 第二十四屆空氣污染控制技術研討會. 2007 江右君, 李宸岳. “多壁奈米碳管的物化特性分析與吸附效能評估.” 第二十二屆空氣污染控制技術研討會. 2005. 江右君, 吳柏昀. “多壁奈米碳管對SF6 吸附特性評估.” 第二十四屆空氣污染控制技術研討會. 2007. 林志遠, ”利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究.” 國立中興大學環境工程所碩士論文. 2007. 黃國軒, “利用TiO2結合奈米碳管降解偶氮系染料之研究.” 國立雲林科技大學. 2006. 巫玉娟, ”活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究.” 國立中山大學環境工程研究所碩士論文. 2005.
本研究主要目的為使用化學氣相沉積法製備奈米碳管與光觸媒複合材料,並尋找最佳之製備條件,針對空氣污染物-丙酮進行觸媒催化分解處理技術應用之潛能。本實驗求取最佳奈米碳管/光觸媒比例、披覆量、前趨物負荷及反應溫度等操作條件,以提升奈米碳管/光觸媒催化丙酮之效率。研究中並進對材料進行XRD、SEM、TEM、TGA、UV-vis、BET及等FL特性分析討論其差異,材料特性分析結果顯示,化學氣相沉積法製備複合材料,可將光觸媒均勻分散於奈米碳管表面,其粒徑大小約20 nm、晶相主要為銳鈦礦;由熱重分析儀結果顯示,奈米碳管於480oC時,開始重量損失,經800oC鍛燒後之殘於重量比約41%;由比表面積分析儀結果顯示,發現添加奈米碳管之含量可增加複合材料之比表面積及孔洞體積。由觸媒催化實驗發現,奈米碳管比例中以31%CNTs/TiO2之複合材料具有最佳觸媒催化之效能、於披覆厚度15.56

In this study student try to combine the advantage of carbon nanotubes (CNTs) and titanium dioxide (TiO2) by chemical vapor deposition (CVD)and to obtain the optimum nanophotocatalyst composite preparation procedure. And to study the characterization properties of nanocomposites with various CNTs containing ratios of 0~50%.From the transmission electron microscopy (TEM) images displayed that the TiO2 particles were uniformly coated on the CNTs surface and the CNTs appear in the composite can make the TiO2 particles well disperse. The X-ray diffraction (XRD) analysis showed that the TiO2 on CNTs surface was Anatase crystallize phase. The TGA results showed that the gasification temperature of CNTs is about 480oC. After the calcinations at 800oC, the CNTs had residue about 41% and the nanocomposites still had 80%. The 31%-CNTs/TiO2 nanocomposites show the best performance for degrading acetone vapor from air streams. When the thickness of the CNTs/TiO2 nanocomposite is 15.56
其他識別: U0005-2407200817271800
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.