Please use this identifier to cite or link to this item:
標題: 探討不同高壓氮氣鍛燒製備下二氧化鈦光觸媒特性之研究
Study on the characteristics of N-doped TiO2 photocatalysts produced by different pressure annealing
作者: 許元和
Hsu, Yuan-Ho
關鍵字: N-doped titanium dioxide;氮摻雜;photocatalyst;annealing pressure;2-propenol;二氧化鈦;鍛燒壓力;光觸媒;異丙醇
出版社: 環境工程學系所
引用: 參考文獻 Anpo, M., “Photocatalysis on Titanium Oxide Catalysts: Approaches in Achieving Highly Efficient Reactions and Realizing the Use of Visible Light,” Catalysis Surveys from Japan, Vol. 1, pp. 169-179 (1997). Anpo, M. and M. Takeuchi, “The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,” Journal of Catalysis, Vol. 216, pp. 505-516 (2003). Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, pp. 269-271 (2001). Bai, H. L., C. C. Chen, C. H. Lin, W. Den and C. L. Chang, “Monodisperse Nanoparticle Synthesis by an Atmospheric Pressure Plasma Process: an Example of a Visible Light Photocatalyst,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7200-7203 (2004). Battiston, G. A., R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, “PECVD of Amorphous TiO2 Thin Films: Effect of Growth Temperature and Plasma Gas Composition,” Thin Solid Films, Vol. 371, pp. 126-131 (2000). Bessergenev, V. G., R. J. F. Pereira, M. C. Mateus, I. V. Khmelinskii and D. A. Vasconcelos, “Study of Physical and Photocatalytic Properties of Titanium Dioxide Thin Films Prepared from Complex Precursors by Chemical Vapor Deposition,” Thin Solid Films, Vol. 503, pp. 29-39 (2006). Brinkley D. and T. Engel, “Evidence for Structure Sensitivity in the Activated and Photocatalytic Dehydrogenation of 2-Propanol on TiO2,” Journal of Physical Chemistry B, Vol. 104, pp. 9836-9841 (2000). Burdett, J. K., T. Hughbanks, G. Miller, J. W. Richardson and J. V. Smith, “Structral-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile snd Anatase Polymorphs of Titanium Dioxide at 15 and 295 K,” Journal of the American Chemical Society, Vol. 109, pp. 3639-3646 (1987). Chang, C. P., J. N. Chen and M. C. Lu, “Heterogeneous Photocatalytic Oxidation of Acetone for Air Purification by Near UV-Irradiated Titanium Dioxide,” Journal of Environmental Science and Health A, Vol. 38, pp. 1131-1143 (2003). Chen, C. C., H. L. Bai, S. M. Chang, C. L. Chang and W. Den, “Preparation of N-Doped TiO2 Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources,” Journal of Nanoparticle Research, Vol. 9, pp. 365-375 (2007a). Chen, C. C., H. L. Bai and C. Chang, “Effect of Plasma Processing Gas Composition on the Nitrogen-Doping Status and Visible Light Photocatalysis of TiO2,” Journal of Physical Chemistry C, Vol. 111, pp 15228-15235 (2007b). Chein, H. M. and T. M. Chen, “Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing,” Journal of the Air and Waste Management Association, Vol. 53, pp. 1029-1036 (2003). Chiu, K. H., B. Z. Wu, C. C. Chang, U. Sree And J. G. Lo, “Distribution of Volatile Oganic Compounds over a Semiconductor Industrial Park in Taiwan,” Environmental Science and Technology, Vol. 39, pp. 973-983 (2005). Di L., S. H. Hajimeda and O. Naoki, “Visible-Light-Driven Nitrogen-Doped TiO2 Photocatalysts: Effect of Nitrogen Precursors on Their Photocatalysis for Decomposition of Gas-Phase Organic Pollutants,” Materials Science and Engineering B, Vol. 117, pp. 67-75 (2005). Duminica, F. D., F. Maury and F. Senocq, “Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures,” Surface and Coatings Echnology, Vol. 188, pp. 255-259 (2004). Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, pp. 37-38 (1972). Fujishima, A., T. N. Rao and D. A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C, Vol. 1, pp. 1-21 (2000). Fujishima, A., K. Hashimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Applications,” BKC, Inc., Japan (1999). Ihara, T., M. Miyoshi, M. Ando, S. Sugihara and Y. Iriyama, “Preparation of a Visible-Light-Active TiO2 Photocatalyst by RF Plasma Treatment,” Journal of Materials Science, Vol. 36, pp. 4201-4207 (2001). Ihara, T., M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, “Visible-Light-Active Titanium Oxide Photocatalyst Realized by an Oxygen-Deficient Structure and by Nitrogen Doping,” Applied Catalysis B, Vol. 42, pp. 403-409 (2003). Irie H., Y. Watanabe and K. Hashimoto, “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders,” Journal of Physical Chemistry B, Vol. 107, pp. 5483-5486 (2003). Kittel, C., Introduction to Solid state Physics, John Wiley and Sons, 7th Ed., New York (1996). Levin, E. M. and H. F. McMurdie, “Phase Diagrams for Ceramists,” American Ceramic Society, Inc., Ohio (1975). Lin, L., R. Y. Zheng, J. L. Xie, Y. X. Zhu and C. Y. Xie, “Synthesis and Characterization of Phosphor and Nitrogen Co-doped Titania,” Applied Catalysis B, Vol. 76, pp. 196-202 (2007). Linsebigler, A. L., G. Lu and J. T. Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, Vol. 95, pp. 735-758 (1995). Li, Y. and T. Ishigaki, “Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt,” Journal of Crystal Growth, vol. 242, pp. 511-516 (2002). Martin, N., C. Rousselot, D. Rondot, E. Palmino and R. Mercier, “Microstructure Modification of Amorphous Titanium Oxide Thin Films during Annealing Treatment”, Thin Solid Films, Vol. 300, pp. 113-121 (1997). Mattews, R. W., “Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide,” Journal of Physical Chemistry, Vol. 91, pp. 3328-3333 (1987). Matsumoto T., N. Iyi, Y. Kaneko, K. Kitamura, S. Ishihara, Y. Takasu and Y. Murakami, “High Visible-Light Photocatalytic Activity of Nitrogen-Doped Titania Prepared from Layered Titania/Isostearate Nanocomposite,” Catalysis Today, Vol. 120, pp. 226-232 (2007). Melnyk, V., V. Shymanovska, G. Puchkovska, T. Bezrodna and G. Klishevich, “Low-Temperature Luminescence of Different TiO2 Modifications,” Journal of Molecular Structure, Vol. 744, pp. 573-576 (2005). Miao, L., S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko and S. Toh, “The Improvement of Optical Reactivity for TiO2 Thin Films by N2-H2 Plasma-Treatment,” Journal of Crystal Growth, Vol. 260, pp.118-124 (2004). Mineral Structure Data, Music, S., M. Gotic, M. Ivanda, A. Turkovic, R. Trojko, A. Sekulic and K. Furic, “Chemical and Microstructural Properties of TiO2 Synthesized by Sol-Gel Procedure,” Materials Science and Engineering B, Vol. 47, pp.33-40 (1997). Mills, A. and S. L. Hunte, “An Overview Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiolgy A, Vol. 108, pp. 1-35 (1997). Nakamura, I., N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Tekeuchi, “Rolr of Oxygen Vacancy in the Plasma-Treated TiO2 Photocatalyst with Visible Light Activity for NO Removal,” Journal of Molecular Catalysis A, Vol. 161, pp. 205-212 (2000). Nakamura, R., T. Tanaka and Y. Nakato, “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes,” Journal of Physical Chemistry B, Vol. 108, pp. 10617-10620 (2004). Okamoto, K., Y. Yamamoto, K. Tanaka, M. Tanaka, and A. Itaya, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Power,” Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022 (1985). Reddy, K. M., S. V. Manorama and A. R. Reddy, “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles,” Materials Chemistry and Physics, Vol. 78, pp. 239-245 (2002). Sakthivel, S., M. V. Shankar, D. W. Bahnemann and V. Murugesan, “Palanichamy, Banumathi Arabinddoo,” Water Research, Vol. 38, pp. 3001-3008 (2004). Sclafani, A., L. Palmisano and M. Schiavello, “Influence of The Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry, Vol. 94, pp.829-832 (1990). Seto, T., S. Manabu and O. Kikuo “Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method,” Aerosol Science and Technology, Vol. 23, pp. 183-200 (1995). Stir, M., R. Nicula and E. Burkel, “Pressure–Temperature Phase Diagrams of Pure and Ag-Doped Nanocrystalline TiO2 Photocatalysts,” Journal of the European Ceramic Society, Vol. 26, pp. 1547-1553 (2006). Stumm, W., Chemstry of the Solid-Water Interfase, John Wiley and Sons, New York (1992). Tatsuma, T., S. I. Tachibana and A. Fujishima, “Remote Oxidation of Organic Compounds by UV-Irradiated TiO2 Via the Gas Phase,” Journal of Physical Chemistry B, Vol. 105, pp. 6987-6992 (2001). USEPA, Control Techniques form Stationary Source, U.S. EPA, EPA-450, USA (1978). Valentine, C. D., G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, “Characterization of Paramagnetic Species in N-doped TiO2 Powders by EPR Spectroscopy and DFT Calculations,” Journal of Physical Chemistry B, Vol. 109, pp. 11414-11419 (2005). Vercammen, K. L. L., Berezin, A. A., Lox, F. and Chang, J. S., “Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: a Critical Review,” Journal of Advanced Oxidation Technologies, Vol. 2, pp. 312-329 (1997). Vorontsov, A. V., E. N. Savinov, G. B. Barannik, V. N. Troitsky and V. N. Parmon, “Quantitative Studies on the Heterogeneous Gas-Phase Photooxidation of CO and Simple VOCs by Air over TiO2,” Catalysis Today, Vol. 39, pp. 207-218 (1997). Weller, H. and A. Eychmueller, “Photochemistry and Photo- electrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticle in Solution and Thin-Film Electrodes,” Advances in Photochemistry, Vol. 20, pp. 165-216 (1995). Wong, M. S., H. P. Chou and T. S. Yang, “Reactively Sputtered N-doped Titanium Oxide Films as Visible-light Photocatalyst,” Thin Solid Films, Vol. 494, pp. 244-249 (2006). Won, D. J., C. H. Wang, H. K. Jang and D. J. Choi, “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied Physical A, Vol. 73, pp. 595-600 (2001). Xu, W. and D. Raftery, “Photocatalytic Oxidation of 2-Propanol on TiO2 and Monolayer Catalysts Studied by Solid-State NMR”, Journal of Physical Chemistry B, vol. 105, pp. 4343-4349 (2001). Xu, P., Mi, L. and P. N. Wang, “Improved Optical Respone for N-Doped Anatase TiO2 Film Prepared by Pulsed Laser Deposition in N2/NH3/O2 Mixture,” Journal of Crystal Growth, Vol. 289, pp. 433-439 (2006). Yang, M. C., T. S. Yang and M. S. Wong, “Nitrogen-Doped Titanium Oxide Films as Visible Light Photocatalyst by Vapor Deposition,” Thin Solid Films, Vol. 469, pp.1-5 (2004). Yin, S., K. Ihara, Y. Aita, M. Komatsu and T. Sato, “Visible-Light Induced Photocatalytic Activity of TiO2−xAy (A=N, S) Prepared by Precipitation Route,” Journal of Photochemistry and Photobiology A, Vol. 179, pp. 105-114 (2006). Yoneyama, H. and T. Torimoto, “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for Photodestructionof Organic Substances of Dilute Concentrations,” Catalysis Today, Vol. 58, pp. 133-140 (2000). Zhao, J. and X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, Vol. 38, pp. 645-654 (2003). Zoppi, R. A., B. C. Trasferetti and C. U. Davanzo, “Sol-Gel Titanium Dioxide Thin Films on Platinum Substrates: Preparation and Characterization,” Journal of Electroanalytical Chemistry, Vol. 544, pp. 47-57 (2003). 李灝銘與張木彬,「氣態污染物控制新技術-非熱電漿技術」,工業污染防治,第89期(2004)。 洪昭南,「電漿反應器與原理」,電漿處理在環境工程之應用技術研習會論文集,台北(2004)。 吳關佑,「線管式與填充床式電漿反應器破壞SF6 之初步研究」,碩士論文,國立中央大學環境工程研究所,桃園(2002)。 韓坤佑,「新式微波電漿反應器之設計及其應用於揮發性有機物處理效率之研究」,碩士論文,國立中興大學化學工程學系,台中(2002)。 曾郁茗,「以含氮氣體於常溫常壓電漿輔助程序製造可見光及紫外光觸媒研究」,碩士論文,國立交通大學環境工程研究所,新竹(2005)。 林聖紘,「藉微波電漿輔助化學氣相沈積系統合成氧化鈦奈米材料與特性分析」,碩士論文,國立清華大學材料科學工程學系,新竹(2006)。 林志遠,「利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究」,碩士論文,國立中興大學環境工程學系,台中(2007)。 勞工安全衛生研究所,「物質安全資料表」,(2000)。
本研究利用大氣常壓電漿輔助奈米微粒製備程序(APPENS)搭配高壓鍛燒製備含氮摻雜奈米可見光觸媒,分析自製的含氮二氧化鈦光觸媒經高壓鍛燒程序下觸媒各項材料特性,探討利用自製可見光觸媒降解揮發性有機氣體異丙醇的效率。實驗結果顯示不同壓力(1~9 Bar)鍛燒,觸媒顆粒均勻且粒徑介於20 nm ~ 30 nm,UV-vis分析結果顯示鍛燒壓力有助於觸媒吸收光譜紅移,觸媒具有吸收可見光能力,相同鍛燒溫度300℃下鍛燒後的各觸媒經X光粉末繞射儀(XRPD)分析皆為銳鈦礦晶相,化學電子能譜分析儀(ESCA)分析結果顯示氮原子摻雜量未隨著鍛燒壓力提升而增加,摻雜的氮主要為吸附型的γ-N2,鍛燒程序的壓力也許有助於使氮原子與觸媒形成Ti-N鍵結型β-N,此外使用螢光分光光譜儀(PL)進行電子電洞對再結合率的測量,顯示壓力提升可以有效降低觸媒電子電洞對再結合率提升觸媒的活性。於光催化異丙醇實驗中,相同鍛燒溫度下鍛燒壓力提升有助於觸媒對異丙醇降解速率增加,以壓力5 Bar溫度500 ℃製備完成觸媒有最佳降解效果,其一階反應速率常數為0.76 hr-1,結果顯示氮摻雜二氧化鈦光觸媒在可見光下較未摻雜的二氧化鈦光觸媒有較佳的降解效果。

The nitrogen doped (N-doped) titanium dioxide (TiO2) photocatalyst was prepared by using the atmospheric-pressure plasma-enhanced nanoparticles synthesis process. In this study, we mainly investigated the characteristics of N-doped TiO2 produced under different annealed conditions and their efficiency on reducing 2-propenol. Synthesized catalysts were annealed in nitrogen which pressure varied from 1 to 9 bar. The results showed that the crystal phase of the catalysts were anatase phase as characterized by X-ray power diffraction (XRPD), and the scanning electron micrographs (SEM) revealed nanoparticle sizes ranging from 20 to 30 nm. The red-shift in UV-Vis absorption spectra enhanced with higher annealing pressure. Without annealing process data, obtained by using electron spectroscopy for chemical analysis (ESCA) exhibited chemadsorped γ-N2 type. However the annealing pressure might enhance the bounding of Ti-N since the spectrum of β-N type was observed for the samples annealed under high pressure, but there is no correlation between doped nitrogen concentration and the annealing pressure. Furthermore the analysis of photoluminescence indicated that the higher annealing pressure might reduce the hole-electron pair re-combnation. As a result, the reactivity of photocatalyst is better. Results also showed that the photocatalyst annealed under 500℃ and 5 bar achieved a better degradation efficience which first order reaction rate is 0.76 hr-1. In conclusion the N-doped TiO2 can achive a better degradation of 2-propenol as compared to those using pure TiO2 photocatalyst.
其他識別: U0005-2408200820464600
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.