Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5492
標題: 高溫好氧系統生物分解動力學及菌相分析之研究
Biodegradation Kinetics and Microbial Community Studies of a Thermophilic Aerobic Biological Treatment System
作者: 林慈儀
Ling, Tzu-Yi
關鍵字: 高溫好氧系統;thermophilic aerobic biological treatment process;比基質利用率;比生長速率;生長係數;Haldane model;PCR-DGGE;specific substrate utilization rate;specific growth rate;yield coefficient;Haldane model;PCR-DGGE
出版社: 環境工程學系所
引用: 王宇萱(2008)“高溫好氧處理對造紙纖維廢水之可行性初步研究” 碩士論文,國立中興大學環境工程研究所,台中。 吳勇興(2004)“自發性高溫好氧處理程序之研究:系統參數測定演算法之開發” 博士論文,國立中興大學環境工程研究所,台中。 許以樺(2000)“以高溫好氧處理油脂廢水可行性研究” 碩士論文,國立中興大學環境工程研究所,台中。 張博貴(2007)“溶解態與顆粒態萘之生物分解及動力學研究” 碩士論文,國立中興大學環境工程研究所,台中。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程研究所,台中。 鄭如琇(2006)“以微生物組成探討厭氧發酵系統之產氫效能” 碩士論文,國立中興大學環境工程研究所,台中。 Ahn, Y., E. J. Park, Y. K. Oh, S. Park, G. Webster, and A. J. Weightman (2005) “Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production” FEMS Microbiol. Lett. 249 : 31-38 Amann, R., H. Lemmer, and M. Wagner (1998) “Monitoring the community structure of wastewater treatment plants: a comparison of old and new techniques” FEMS Microbiol. Ecol. 25 : 205-215 Amann, R.I., W. Ludwig, and K. H. Schleifer (1995) “Phylogenetic identification and in situ detection of individual microbial cells without cultivation” Microbiol. Rev. 59 : 143-169 Banat, F. A., S. Prechtl, and F. Bischof (2000) “Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol” Chemosphere 41 : 297-302 Becker, P., D. Koster, M. N. Popov, S. Markossian, G. Antranikian, and H. Markl (1999) “The biodegradation of olive oil and the treatment of lipid-rich wool scouting wastewater under aerobic thermophilic conditions” Wat. Res. 33 : 653-660 Blackburn, J. W. (2001) “Effect of swine waste concentration on energy production and profitability of aerobic thermophilic processing” Biomass Bioenerg. 21 : 43-51 Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, and R. G. J. M. van der Lans (1990) “Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: A case study related to the microbial desulfurization of coal” Biotechnol. Bioeng. 35 : 1111-1119 Brock, T. D. and H. Freeze (1969) “Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile” J. Bacteriol 98 : 289-297 Burt, P., M. H. Littlewood, S. F. Morgan, B. N. Dancer, and J. C. Fry (1990) “Venturi aeration and thermophilic aerobic sewage digestion in small-scale reactors” Appl. Microbiol. Biot. 33 : 721-724 Callia, B., B. Mertoglua, K. Roestb, and B. Inancc (2006) “Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate” Bioresour. Technol. 97 : 641-647. de Lucas, A., L. Rodriguez, J. Villasenor, and F. J. Fernandez (2005) “Biodegradation kinetics of stored wastewater substrates by a mixed microbial culture” Biochem. Eng. J. 26 : 191-197 Denny, K., H. Hahn, D. Leonhard, and J. Heidman (1990) “Autoheated thermophilic aerobic digestion” Wat. Environ. Tech. 3 : 65-72 Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor” Process Biochem. 40 : 1125-1129 Dorigo, U., L. Volatier, and J. F. Humbert (2005) “Molecular approaches to the assessment of biodiversity in aquatic microbial communities” Wat. Res. 39 : 2207-2218 Grunditz, C. and G. Dalhammar (2001) “Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter” Wat. Res. 35 : 433-440 Heinonen-Tanski, H., T. Kiuru, J. Ruuskanen, K. Korhonen, J. Koivunen, and A. Ruokoja¨rvi (2005) ”Thermophilic aeration of cattle slurry with whey and/or jam wastes” Bioresource Technol. 96 : 247-252 Huber, H., M. Thomm, H. Konig, G. Thies, and K. O. Stetter (1982) “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen” Arch. Microbiol. 132 : 47-50 Jahren, S., J. Rintala, H. Odegaard (2002) “Aerobic moving bed biofilm reactor treating thermomechanical pulping (TMP) whitewater under thermophilic conditions” Wat. Res. 36 : 1067-1075 Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from submarine hydrothermal vent” Arch. Microbiol. 136 : 254-261 Juteau, P. (2006) “Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste” Livest. Sci. 102 : 187-196 Juteau, P., D. Tremblay, C. B. Ould-Moulaye, J. G. Bisaillon, and R. Beaudet (2004) “Swine waste treatment by selfheating aerobic thermophilic bioreactors” Wat. Res. 38 : 539-546 Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet (2005) “Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor treating swine waste” Appl. Microbiol. Biot. 66 : 115-122 Kovarova-Kovar, K. and T. Egli (1998) “Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics” Microbiol. Mol. Biol. R. 62 : 646-666 Kumar, A., S. Kumar, and S. Kumar (2005) “Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194” Biochem. Eng. J. 22 : 151-159 Kurian, R., C. Acharya, G. Nakhla, and A. Bassi (2005) “Conventional and thermophilic aerobic treatability of high strength oily pet food wastewater using membrane-coupled bioreactors” Wat. Res. 39 : 4299-4308 Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR)” Chemosphere 65 : 1204-1211 Kurisu, F., H. Satoh, T. Mino, and T. Matsuo (2002) “Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method” Wat. Res. 36 : 429-438 LaPara, T. M. and J. E. Alleman (1999) “Thermophilic aerobic waste treatment, review paper” Wat. Res. 33 : 895-908 LaPara, T. M., A. Konopka, C. H. Nakatsu, and J. E. Alleman (2001) “Thermophilic aerobic treatment of a synthetic wastewater in a membrane-coupled bioreactor” J. Ind. Microbiol. Biot. 26 : 203-209 LaPara, T. M., C. Nakatsu, L. Pantea, and J. Alleman (2001) “Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development” Wat. Res. 35 : 4417-4425 Liu, H., T. Zhang, and H. H. P. Fang (2003) “Thermophilic H2 production from a cellulose-containing wastewater ” Biotechnol. Lett. 25 : 365-369 Maidak, B., J. Cole, T. Lilburn, C. J. Parker, P. Saxman, R, Farris, G. Garrity, G. Olsen, T. Schmidt, and J. Tiedje (2001) “The RDPⅡ(Ribosomal Database Project)” Nucleic Acids Res. 29 : 173-174 Mandels, M. and E. T. Reese (1957) “Induction of cellulose in Trichoderma Viride as influenced by carbon sources and metals” J. Bacteriol. 73 : 269-278 Mikkelsen, H. and K. Keiding (2002) “The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test” Wat. Res. 36 : 2931-2940 Mohaibes, M. and H. Heinonen-Tanski (2004) “Aerobic thermophilic treatment of farm slurry and food wastes” Bioresource Technol. 95 : 245-254 Morris, C. E., M. Bardin, O. Berge, P. Frey-Klett, N. Fromin, H. Girardin, M. H. Guinebretiere, P. Lebaron, J. M. Thiery, and M. Troussellier (2002) “Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999” Microb. Mol. Biol. Rev. 66 : 592-616 Nielsen, A. T., W. T. Liu, C. Filipe, L. Grady, Jr., S. Molin, and D. A. Stahl (1999) “Identification of a Novel Group of Bacteria in Sludge from a Deteriorated Biological Phosphorus Removal Reactor” Appl. Envir. Microbiol. 65 : 1251-1258 Oles, J., N. Dichtl, and H. Niehoff (1997) “Full scale experience of two stage thermophilic/mesophilic sludge digestion” Wat. Sci. Tech. 36 : 449-456 Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace (1986) “Microbial ecology and evolution: a ribosomal RNA approach” Annu. Rev. Microbiol. 40 : 337-365 Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen (1986) “The analysis of natural microbial populations by ribosomal RNA sequences” Adv. Microb. Ecol. 9 : 1-55 Rittmann, B. E. and P. L. McCarty (2001) “Environmental Biotechnology: Principles and Application” McGRAW-HILL INTERNATIONAL EDITIONS, Singapore : 16-17 Rozich, A. F. and K. Bordacs (2002) “Use of thermophilic biological aerobic technology for industrial wastewater treatment” Wat. Sci. Tech. 46 : 83-89 Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa (2000) “Complete decomposition of biological waste sludge by thermophilic aerobic bacteria” Wat. Res. 42 : 81-88 Salles, J. F., F. A. de Souza, and J. D. van Elsas (2002) “Molecular method to assess the diversity of Burkholderia species in environmental samples” Appl. Environ. Microbiol. 68 : 1595-1603 Shiota, N., A. Akashi, and S. Hasegawa (2002) “A strategy in wastewater treatment process for significant reduction of excess sludge production” Wat. Sci. Tech. 45 : 127-134 Singh, R. K., S. Kumar, S. Kumar, and A. Kumar (2008) “Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869” Biochem. Eng. J. 40 : 293-303 Skjelhaugen, O. J. (1999) “Thermophilic aerobic reactor for processing organic liquid wastes” Wat. Res. 33 : 1593-1602 Sürücü, G. (1999) “Growth requirements of thermophilic aerobic microorganisms in mixed cultures for the treatment of strong wastes” Wat. Sci. Tech. 40 : 53-60 Sürücü, G. A., E. S. K. Chian, and R. S. Engelbrecht (1976) “Aerobic thermophilic treatment of high strength wastewaters” J. WPCF 48 : 669-679 Suvilampi, J., A. Lehtomäki, and J. Rintala (2003) “Comparison of laboratory-scale thermophilic biofilm and activated sludge processes integrated with a mesophilic activated sludge process” Bioresource Technol. 88 : 207-214 Suvilampi, J., A. Lehtomäki, and J. Rintala (2005) “Comparative study of laboratory-scale thermophilic and mesophilic activated sludge processes” Wat. Res. 39 : 741-750 Suvilampi, J. and J. Rintala (2002) “Comparison of activated sludge process at different temperatures: 35℃, 27-55℃, and 55℃” Environ. Technol. 23 : 1127-1134 Tchobanoglous, G., F. L. Burton, and D. H. Stensel (2003) “Wastewater engineering treatment and reuse, 4th ed.” The McGraw-Hill Companies, New York, USA Tiirola, M. A., J. E. Suvilampi, M. S. Kulomaa, and J. A. Rintala (2003) “Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR)” Wat. Res. 37 : 2259-2268 Torsvik, V., J. Goksøyr, and F. L. Daae (1990) “High diversity in DNA of soil bacteria” Appl. Environ. Microbiol. 56 : 782-787 Torsvik, V., L. Øvreas, and T. F. Thingstad (2002) “Prokaryotic diversity - magnitude, dynamics and controlling factors” Science 296 : 1064-1066 Tripathi, C. and D. Allen (1999) “Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent” Wat. Res. 33 : 836-846 US EPA (1990) “Autothermal thermophilic aerobic digestion of municipal wastewater sludge” EPA/625/10-90/007 US EPA (1992) “Control of pathogens and vector attraction in sewage treatment” EPA/625/R-92/013 Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007) “Landfill leachate treatment using thermophilic membrane bioreactor” Desalination 204 : 8-16 Vogelaar, J., A. Klapwijk, J. B. VanLier, and W. H. Rulkens (2000) “Temperature effects on the oxygen transfer rate between 20 and 55℃” Wat. Res. 34 : 1037-1041 Vogelaar, J., B. Klapwijk, H. Temmink, and J. B. van Lier (2003) “Kinetic comparisons of mesophilic and thermophilic aerobic biomass” J. Microbiol. Biotechnol. 30 : 81-88 Vogelaar, J., E. Bouwhuis, A. Klapwijk, H. Spanjers, and J. Lier (2002) “Mesophilic and thermophilic activated sludge post treatment of paper mill process water” Wat. Res. 36 : 1869-1879 Vogelaar, J., J. van Lier, A. Klapwijk, M. de Vries, and G. Lettinga (2002) “Assessment of effluent turbidity in mesophilic and thermophilic activated sludge reactors-origin of effluent colloidal material” Appl. Microbiol. Biotechnol. 59 : 105-111 Wagner M., R. Amann, H. Lemmer, and K. H. Schleifer (1993) “Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure” Appl. Environ. 59 : 1520-1525 Watanabe, H., T. Kitamura, S. Ochi, and M. Ozaki (1997) “Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions” Wat. Sci. Technol. 36 : 25-32 Woese, C. R. (1978) “Bacterial evolution” Microbiol. Rev. 51 : 211-271 Yilmaz, T., A. Yuceer, and M. Basibuyuk (2008) “A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater” Bioresource Technol. 99 : 156-163 Zita, A. and A. Hermansson (1997) “Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs” Appl. Environ. Microbiol. 63: 1168-1170
摘要: 
本研究建立一高溫好氧混合族群馴化槽,經由馴化篩選出在高溫系統中具有降解能力之優勢菌種,待馴化達穩定後,利用批次試驗探討高溫混合菌群於不同進流基質濃度下之降解成效,以求得高溫混合菌群之反應動力參數,並進一步探討文獻中微生物生長動力模式之適用性。另一方面,本研究結合PCR-DGGE之分子生物技術,探討高溫好氧系統中混合菌群的組成,以期瞭解微生物族群於系統中扮演的角色。
比較不同基質濃度之批次實驗結果,當基質濃度低於5000 mg/L時,系統因微生物的高衰退現象而不易達成穩定,當基質濃度高於15,000 mg/L時,大量的溶解性微生物代謝產物將累積於系統中導致去除成效不彰;隨著基質濃度的提高,高溫菌群的比基質利用率亦有隨之增加的趨勢,顯現高溫系統針對高濃度廢水處理上的優勢;基質濃度為15,000 mg/L時,高溫菌群具有最高的比生長速率,然而當基質濃度高達20,000 mg/L時,微生物的比生長速率卻下降,同樣的趨勢亦可在生長係數的變化中觀察到,顯示基質濃度的抑制不僅影響了微生物的生長,亦會造成生長係數的降低。由不同基質濃度之批次實驗求取高溫好氧生物降解之反應動力參數,以文獻中動力模式推估的結果顯示,Haldane model能以較簡單的模式模擬微生物於基質抑制系統中的生長動力模式,而以Haldane model所推估之各項參數值分別為μmax=7.1 mg-cell/mg-cell-day、Ks=310 mg-COD/L、Ki=656100 mg-COD/L。
利用PCR-DGGE分析高溫好氧馴化槽的菌相組成,以968f-gc及1392r引子組經PCR反應後,使用變性梯度30~70%的DGGE膠體可做為族群分析的最適條件,DGGE圖譜上的亮帶經切膠回收及定序比對後,顯示高溫系統中的優勢族群主要為Meiothermus sp.及Thermus sp.。

A thermophilic aerobic biological treatment process was operated in a semi-continuously fed bioreactor in this study. A mixed thermophilic bacterial culture was acclimated with the artificial wastewater of 10,000 mg-COD/L at 55℃. Batch experiments were carried out over a range of initial substrate concentrations to evaluate the biodegradation efficiency. Furthermore, six kinetic models were employed to fit to the experimental kinetic parameters to develop the kinetic model for the thermophilic aerobic biological treatment bioreactor. In addition, PCR-DGGE was employed to determine the microbial community of mixed culture in the bioreactor.
The batch results of different substrate concentrations showed that the system stabilization was hard to be achieved below 5000 mg/L because of the high endogenous decay of the mixed thermophilic bacterial culture. The deterioration in effluent quality was observed as the substrate concentration was above 15,000 mg/L because of the accumulation of soluble microbial products. The value of specific substrate utilization rate tended to increase with an increase in substrate concentrations. As such, thermophilic aerobic biological treatment process has exhibited considerable advantages for the treatment of high-strength wastewaters. The value of maximum specific growth rate was found to be equal to 6.96 day-1, and it was achieved at initial substrate concentration of 15,000 mg/L. However, the specific growth rate would decrease as the substrate concentration increased to 20,000 mg/L. This decline trend could also be observed in the yield coefficient. It indicated that high substrate concentration was inhibitory to the growth of mixed thermophilic culture and the inhibition effect became predominant when the concentration was above 15,000 mg/L. Additionally, a nonlinear regression technique was employed to determine the kinetic parameters of the thermophilic aerobic biodegradation process, and it suggested that Haldane model could be successfully used for not only its high correlation coefficient but also its mathematical simplicity for representing the growth kinetics of inhibitory substrates. Moreover, the kinetic parameters evaluated by Haldane model including μmax, Ks, and Ki were 7.1 mg-cell/mg-cell-day, 310 mg-COD/L, and 656100 mg-COD/L, respectively.
The molecular approach of PCR-DGGE was used to assess microbial diversity in the thermophilic aerobic biological treatment bioreactor. PCR amplifications were carried out by 968f-gc and 1392r primer sets which target with the 16S rDNA universal region of eubacteria. The linear denaturing gradient of DGGE ranging from 30% to 70% would be best for the analysis of mixed thermophilic microbial populations. DGGE banding patterns were evaluated, and bacterial populations were identified by sequencing individual bands. As a result, the species of Meiothermus and Thermus were certainly the dominant microorganisms in the bioreactor.
URI: http://hdl.handle.net/11455/5492
其他識別: U0005-2508200809344300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.