Please use this identifier to cite or link to this item:
標題: 利用受體模式推估中部空品區受到河川揚塵之影響
A study for using receptor model to analysis the affect of river bank in central air quality area
作者: 孫孟祺
Sun, Meng-Chi
關鍵字: Receptor model;受體模式;PMF;estimated sample;river bank;PMF;模擬樣本;河川揚塵
出版社: 環境工程學系所
引用: Baker D.R. and Diana L.M., “Simple Method for Fitting Data When Both Variables Have Uncertainties,” The American Journal of Physics, Vol.42, pp.224-226 (1974). Brown S.G., and Hafner H.R., “Multivariate Receptor Modeling Workbook,” Sonoma Technology, Inc. Petaluma, CA (2005). Currie L.A., Gerlach R.W., Lewis C.W., Balfour W.D., Cooper J.A., Dattner S.L., Cesar R.T.D., Gordon G.E., Heisler S.L., Hopke P.K., Shah J.J., Thurston G.D., and Williamson H.J., “Interlaboratory comparison of source apportionment procedures: Results for Simulated Data Sets,” Atmospheric Environment, Vol. 18, pp. 1517-1537 (1984). Chow J.C., Liu C.S., Cassmassi J., Watson J.G., Lu Z., and Prichett L.C., “A Neighborhood-Scale Study of PM10 Source Contirbutions in Rubidoux, California,” Atmospheric Environment, Vol. 26A, pp. 693-706 (1992). Chow J.C., “Measurement methods to determine compliance with ambient air quality standards for suspended particles,” Journal of Air and Waste Management Association, Vol. 45, pp. 320-382 (1995). Chan Y.C., Simpson R.W., Mctainsh G.H., Vowles P.D., Cohen D.D., Bailey G.M., “Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modeling,” Atmospheric Environment, Vol. 33, pp. 3251-3268 (1999). Dzubay T.G. and Mamane Y., “Use of electron Microscopy Data in receptor Models For PM10,” Atmospheric Environment, Vol. 23, pp. 467-476 (1989). Groblicki P.J., Wolff G.T. and Countess R.J., “Visibility-reducing species in the Denven “brown cloud” —I. Relationship between extinction and chemical composition.,” Atmospheric Environment, Vol. 15, pp. 2473-2484 (1981). Hedberg E., Gidhagen L., and Johansson C., “Source contribution to PM10 and arsenic concentrations in Central Chile using positive matrix factorization,” Atmospheric Environment, Vol. 39, pp. 549-561 (2005). Hien P.D., Bac V.T., and Thinh N.T.H., ”Investigation of sulfate and nitrate formation on mineral dust particles by receptor modeling,” Atmospheric Environment, Vol. 39, pp. 7231-7239 (2005). Kim E., Hopke P.K., and Qin Y., “Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment,” Journal of Air and Waste Management Association, Vol. 55, pp. 1190-1199 (2005). Larson C.L., and Hanson R.J., Solving Least-squares Problems, Prentitce-Hall, Englewood Cliffs, NJ (1974). Lee E., Chan C. K., and Paatero P., ”Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong,” Atmospheric Environment, Vol. 33, pp. 3201-3212 (1999). Li Zheng, Hopke P.K., Husain L., Qureshi S., Dutkiewicz V.A., Schwab J.J., Drewnick F., and Demerjian K.L., “Sources of fine particle composition in New York city,” Atmospheric Environment, Vol. 38, pp. 6521-6529 (2004). Liu W., Wang Y., Russell A., and Edgerton E. S., “Atmospheric aerosol over two urban-rural pairs in the southeastern United States: Chemical composition and possible sources.,” Atmospheric Environment, Vol. 39, pp. 4453-4470 (2005). Liang J., and Fairley D., “Validation of an efficient non-negative matrix factorization method and its preliminary application in Central California.,” Atmospheric Environment, Vol. 40, pp. 1991-2001 (2005). Miller M.S., Friedlander S.K., and Hidy G.M., “A chemical element balance for the Pasadena Aerosol,” J. Colloid Interface Sci., Vol. 39, pp. 165-176 (1972). Malinowski E.R., Factor Analysis in Chemistry , Wiley, New York, 2nd Ed (1991). Morishit M., Keeler G.J., Wagner J.G., and Harkema J.R., “Source identification of ambient PM2.5 during summer inhalation exposure studies in Detroit, MI,” Atmospheric Environment, Vol. 40, pp. 3823-3834 (2006). Olmez I., Sheffield A., Gordon G.E., Houck J.E., Pritchett L.C., Cooper J.A., Dzubay T.G., and Bennent R.L., “Composition of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,” Journal of the Air Pollution Control Association , Vol. 38, pp. 1392- 1402 (1988). Paatero P. and Tapper U., “Analysis of Different Models of Factor Analysis as Least Squares Fit Problems,” Chemometrics Inteligent Laboratory Systems, Vol. 18, pp. 183-194 (1993). Paatero P. and Tapper U., “Positive matrix factorization : a non-negative factor model with optimal utilization of error estimates of data values,” Environmetrics , Vol. 5, pp. 111-126 (1994). Paatero P., “Least squares formulation of robust nonnegative factor analysis,” Chemometrics Intelligent Laboratory Systems, Vol. 38, pp. 223-242 (1997). Paatero P., “The multilinear engine –a table –driven least squares program for solving multilinear program, including the n-way parallel factor analysis model,” Journal of Computational and Graphical Statistics, Vol. 8, pp. 854-888 (1999). Ramadan Z., Song X-H., and Hopke P. K., “Identification of sources of Phoenix aerosol by positive matrix factorization,” Atmospheric Environment, Vol. 34, pp. 3319-3329 (2000). Song X-H., Polissar A.V., Hopke P.K., “Source of fine particle composition in the northeastern US,” Atmospheric Environment, Vol. 35, pp. 5277-5286 (2001). Salvador P., Artinano B., Alonso D.G., Querol X., and Alastuey A., “Identification and Characterisation of Sources of PM10 in Madrid(Spain) by Statistical Methods,” Atmospheric Environment, Vol. 38, pp. 435-447 (2004). Song Yu, Zhang Y., Xie S., Zeng L., Zeng M., Salmon L.G., Shao M., and Slanina S., “Source apportionment of PM2.5 in Beijing by positive matrix factorization,” Atmospheric Environment, Vol. 40, pp. 1526-1537 (2006). U.S.EPA, ”Receptor Model Source Composition Library,” Environmental Protection Agency Research Triangle Park, NC., EPA-450/4-85-002 (1984). U.S.EPA, Code of Federal Regulations. Part 50. National primary and secondary ambient air quality standards. Available on the Internet at /epacfr40/ (1998). U.S.EPA, Impact of April 2001 Asian Dust Event on Particulate Matter Concentrations in the United States. National Air Quality And Emissions Tredns Report, Special Studies, /air/ airtrends/ asian-dust4.pdf (2003). Watson J.G., “Chemical Elemental Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particule Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon (1979). Wang S. and Larson T., “Partial Least Squares Regression—A New Receptor Model,” The 8th Annual Conference on Air Pollution Control Technology, pp. 145-154 (1991). Wang S., Generation and Interpretation of Source Apportionment Models of Airborne Particles with Application to Both a Simple and a Moderately Complex Urban Airshed, Doctor of Philosophy, University of Washington (1991). Xie Y.L., Hopke P.K.,Paatero P., Barrie L.A. and Li S.M., “ Identification of source nature and seasonal variations of Arctic aerosol by the multilinear engine.,” Atmospheric Environment, Vol. 33, pp. 2549-2562 (1999). Yang C.Y., Cheng M.F., Chiu J.F. and Tsai S.S., “Female lung cancer and petrochemical air pollution in Taiwan.,” Archives of Environmental Health, Vol. 54, pp. 180-185 (1999). Zheng M., Salmon L.G., Schauer J.J., Zeng L., Kiang C.S., Zhang Y., and Cass G.R., “Seasonal trends in PM2.5 source contribution in Beijing, China.,” Atmospheric Environment, Vol. 39, pp. 3967-3976 (2005). 蔣本基、楊末雄、王竹方、張勝祺、魏耀輝、周仲島、望熙榮、鄭曼婷、詹長全、王秋森、杜悅元等,「台灣北、中部地區受體模式建立與應用研究(一)」,行政院環境保護署報告,EPA-82-E3F1-09-01 (1993)。 鄭曼婷、邱嘉斌、陳紀倫、王景良、「南高屏地區空氣品質總量限制研究—子計畫E2:既有指紋資料庫之彙整與受體模式在南高屏地區之應用」,行政院環境保護署研究報告,EPA-87-FA42-03-F5 (1998)。 鄭曼婷、陳昭忞、邱嘉斌,「鍋爐煙道排放PM2.5及PM10微粒之特性與化學組成」,國科會專題研究計畫期末報告,NSC90-2211-E-005-014 (2002)。 邱嘉斌,「台灣中部都會與沿海區域PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究」,博士論文,國立中興大學環境工程研究所,台中(2005)。 梁志峰,「受體模式CMB與PMF之比較與驗證」,碩士論文,國立中興大學環境工程研究所,台中 (2006)。 林啟文、吳秋芬、高滄志,「濁水溪鄰近地區季風揚塵來源分析」,中華民國環境工程學會第二十三屆空氣污染控制技術研討會,台中市 (2006)。 張時獻、翁瑞宏、郭崇義,「94年度南投縣懸浮污染物暴露與居民健康之調查」,南投縣環境保護局報告 (2006)。 王富民,「利用CMB與PMF模式針對不同共線性程度之污染源的分析與比較」,碩士論文,國立中興大學環境工程研究所,台中 (2007)。 郭崇義、林傳堯、林昭遠、黃隆明、望熙榮,「中部地區河川揚塵對空氣品質影響之調查評估專案工作計畫」,行政院環境保護署報告,EPA-95-FA14-03-A216 (2007)。
本研究所採用的受體模式為—正矩陣因子法(Positive Matrix Factorization,PMF)。此模式是多變量分析中的一種,它利用樣本濃度和其不確定性,藉著有效變異加權最小平方法去推估污染源。它不像傳統受體模式CMB需要污染源指紋資料。此方法有幾項優點:(1)免去搜集污染源指紋那樣龐大的資料而怕資料不完全無法有效分析。(2)也沒有像傳統CMB模式在解析污染源相似的情形之下會有共線性問題的存在,因此無法有效判定污染源及特徵因子。(3)亦不像其他多變量分析有負值產生,比較好去判斷分析結果。

This study institute used receptor model is PMF. This model is a kind of Multivariate analysis, it used the samples’ consistency and uncertainty to conjecture the source pollution. PMF has some advantages: (1) not require so much source profiles like CMB. (2) when under the similar pollution source, traditional CBM will exist collinear problem and make determining the pollution sources and characteristic factors ineffectively, but PMF don’t have this problems. (3) do not have the negative value as other Multivariate analysis have, is much better to determine the analytic result.

This study base on CHUNG SHAN MEDICAL UNIVERSITY ’s sampling data and central Taiwan monitor’s data to category and analyze every factors’ characteristic. Since the main object is the raise dust which had the extraordinary similar structure that river bank use riverbed’s soil element concentration as background value to proceed comparing. Focused on Central Taiwan measure station (Dajia、Houli、Wurih、Shengang、Taisi、Siansi、Lunbei) proceed sampling analyzing and used PMF to analyze the sampling’s contribution value caused by river bank. Preliminary expected the river bank collected from the river in central Taiwan(Tachia River、Ta-an River、Choshui River、Tatu River) may affect the air quality nearby. We plan that the local government should aim at this issue proposing the improving measures.
其他識別: U0005-2508200812550000
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.