Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5499
DC FieldValueLanguage
dc.contributor胡慶祥zh_TW
dc.contributor洪俊雄zh_TW
dc.contributor.advisor盧至人zh_TW
dc.contributor.advisorC-hih-Jen Luen_US
dc.contributor.author沈育資zh_TW
dc.contributor.authorShen, Yu-Tzuen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:34:54Z-
dc.date.available2014-06-06T06:34:54Z-
dc.identifierU0005-2508200813345600zh_TW
dc.identifier.citation吳永興 (2004) 自發性高溫好氧處理程序之研究:系統參數測定演算法之開發,博士論文,國立中興大學環境工程學研究所,臺中 李季眉 (1992) 環境微生物實驗,中興大學,臺中 胡苔莉 (1987) 微生物學實驗,國立編譯館,臺北 韓麗明,吳常豪 (1977) 工業廢水之理論、實務及處理,徐氏基金會,臺北 顏國欽 (1993) 食品油脂學(上),中興大學,臺中 American Public Health Association (APHA), American Water Works Association (AWWA), and Water Environment Federaation (WEF) (1998) Standars for Examination of Water and Wastewater – Part 5210:Biochemical Oxygen Demand (BOD) Arpigny, J. L. and K. E. Jaeger (1999) “Bacterial lipolytic enzymes: classification and properties” Biochem J., 343:177-83 Ateslier, Z. B. B. and K. Metin (2006) “Production and partial characterization of a novel thermostable esterase from a thermophilic Bacillus sp.” Enzyme and Microbial. 38:628-635 Baker, H., O. Frank, I. Pasher, B. Black, SH. Hutner, and H. Sobotka(1960)“Growth requirements of 94 strains of thermophilic bacilli” Can J Microbiol 6:557-63 Becker, P., D. Köster, M. N. Popov, S. Markossian, G. Antranikian, and H. Märkl (1999) “The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions” Wat. Res. 33:184-190 Becker, P., I. A. Reesh, S. Markossian, G. Antranikian, and H. Märkl (1997) “Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil” Appl. Microbiol. and Biotechnol., 48:184-190 Beffa, T., M. Blanc, P. F. Lyon, G. Vogt, M. Marchiani, J. L. Fischer, and M. Aragno (1996) “Isolation of Thermus strains from hot composts (60 to 80 degrees ℃)” Appl. Environ. Microbiol. 62:1723-7 Bérubé, P. R. and E. R. Hall (1999) “Treatment of evaporator condensate using a high temperature membrane bioreactor:determination of maximum operating temperature and system costs In: Proceedings of TAPPI 1999 International Environmental Conference” 769–80 Boogerd, F. C., P. Bos, J. G. Kuenen, J. J. Heijnen, and R. G. J. M. Lans (1990) “Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles:A case study related to the microbial desulfurization of coal” Biotechnol. Bioeng. 35:1111-1119 Brock, T. D. (1986) “Thermophiles : general, molecular, and applied microbiology” John Wiley Inc. Brock, T. D. and H. Freeze (1969) “Thermus aquaticus gen. N. and sp. N., a non-sporulating extreme thermophile” J. Bacteriol. 98:289-297 Brown, S. C., C. P. L. Grady, H. H. Tabak (1990) “Biodegradation kinetics of substituted phenolics: Demonstration of a protocol based on electrolytic respirometry” Wat. Res. 24:853-861 Campbell, L. L. and O. B. Williams (1953) “The effect of temperature on the nutritional requirements of facultative and obligate thermophilic bacteria” J. Bacteriol. 65:141-5 Chen, S. J., C. Y. Cheng, T. L. Chen (1998) “Production of an alkaline lipase by Acinetobacter radioresistens” J. Fermentat. Bioeng. 86: 308-312 Couillard, D. and S. Zhu (1993) “Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery” Environ. Pollut. 79: 121-126 Couillard, D., S. Gariépy, and F. T. Tran (1989) “Slaughterhouse effluent treatment by thermophilic aerobic process” Water Res., 23:573-579 Dias, J. C. T., R. P. Rezende, C. M. Silva, and V. R. Linardi (2005) “Biological treatment of kraft pulp mill foul condensates at high temperatures using a membrane bioreactor” Proc. Biochem. 40:1125-1129 Domínguez, A., P. Fuciños, M. L. Rúa, L. Pastrana, M. A. Longo, and M. A. Sanromán (2007) “Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp.” Enzy. and Micro. Technol. 40:187-194 Droste, R. L. (1997) “Theory and practice of water and wastewater treatment” John Wiley Inc. Elia, J. D. and W. Chesbro (1992) “Maintenance energy demand affects biomass synthesis but not cellulase production by a mesophilic Clostridium” J. Indus. Microbiol. Biotechnol. 10:123-133 Gabriel, B. (1994) “Wastewater microbiology” Wiley-Liss Gokulakrishnan, S. and S. N. Gummadi (2006) “Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182” Proc. Biochem. 41:1417-1421 Grady, C. P. L., B. F. Smets, D. S. Barbeau (1996) “Variability in kinetic parameter estimates: A review of possible causes and a proposed terminology” Wat. Res. 30: 742-748 Grady, C. P. L., J. S. Dang, and D. M. Harvey (1989) “Determination of biodegradation kinetics through use of electrolytic respirometry” Wat. Sci. Tech. 21:957-968 Huber, H., M. Thomm, H. Konig, G. Thies, and K.O.Stetter (1982) “Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen” Arch. Microbiol. 132:47-50 Jaeger, K. E. and T. Eggert (2002) “Lipases for biotechnology” Curr. Opin. in Biotechnol. 13:390-397 Jones, W. J., J. A. Leigh, F. Mayer, C. R. Woese, and R. S. Wolfe (1983) “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent” Arch. Microbiol. 136:254-261 Jurado, A. S., A. C. Santana, M. D. A. Costa, V. M. C. Madeira (1987) “Influence of divalent cations on the growth and morphology of Bacillus stearothermophilus” J. Gener. Microbiol. 133:507-513 Juteau, P. (2006) “Review of the use of aerobic thermophilic bioprocesses for the treatment of swine waste” Live. Sci. 102:187-196 Juteau, P., D. Tremblay, R. Villemur, J. G. Bisaillon, and R. Beaudet (2004) “Analysis of the bacterial community inhabiting an aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste” Appl. Microbiol. Biotechnol. 66:115-122 Kabrick, R. M. and W. J. Jewell (1982) “Fate of pathogens in thermophilic aerobic sludge digestion” Wat.Res. 16:1051-1060 Krahe, M., G. Antranikian, and H. Markl (1996) “Fermentation of extremophilic microorganisms” FEMS Microbiol. Rev. 18:271-285 Kurian, R., G. Nakhla, and A. Bassi (2006) “Biodegradation kinetics of high strength oily pet food wastewater in a membrane-coupled bioreactor (MBR)” Chemosphere 65: 1204-1211 Lang, N. L. and S. R. Smith (2008) “Time and temperature inactivation kinetics of enteric bacteria relevant to sewage sludge treatment processes for agricultural use” Wat. Res. 42:2229-2241 LaPara, T. M. and J. E. Alleman (1999) “Thermophilic aerobic biological wastewater treatment” Wat. Res. 33:895-908 Madigan, M. T. and J. M. Martinko (2006) “Brock biology of microorganisms” 11th ed., Pearson Prentice Hall Inc. Malladi, B. and S. C. Ingham (1993) “Thermophilic aerobic treatment of potato-processing wastewater” W. J. Microbiol. Biotechnol. 9:45–49 McKee, T. and J. R. McKee (2003) “Biochemistry, The molecular basis of life” 3rd ed., McGraw-Hill Inc. Metcalf and Eddy (1991) “Wastewater engineering : treatment, disposal, and reuse” 3rd ed., McGraw-Hill Inc. Mohaibes, M. and H. H. Tanski (2004) “Aerobic thermophilic treatment of farm slurry and food wastes” Bioresour. Technol. 95:245-254 Mosley, G. A., G. L. Card, W. L. Koostra (1976) “Effect of calcium and anaerobiosis on the thermostability of Bacillus stearothermophilus” Can. J. Microbiol. 22:468-74 Rittmann, B. E. and P. L. McCarty (2001) “Environmental biotechnology:principles and applications” 2nd ed., McGraw-Hill Inc. Rowe, J. J., I. D. Goldberg, R. E. Amelunxen (1975) “Development of defined and minimal media for the growth of Bacillus stearothermophilus” J. Bacteriol. 124:279-84 Rozich, A. F. and K. Bordacs (2002) “Use of thermophilic biological aerobic technology for industrial wastewater treatment” Wat. Sci. Tech. 46:83-89 Rudolfs, W. and H. R. Amberg (1953) “White water treatment V. aeration with nonflocculent growths” Sewage Ind. Wast. 25:70-78 Rusch, A., E. Walpersdorf, D. Debeer, S. Gurrieri, and J. P. Amend (2005) “Microbial communities near the oxic/anoxic interface in the hydrothermal system of Vulcano Island, Italy” Chem. Geol. 224:169-182 Russell, J. B. and G. M. Cook (1995) “Energetics of bacterial growth: balance of anabolic and catabolic reactions” Microbiol. Rev. 59:48-62 Sakai, Y., T. Aoyagi, N. Shiota, A. Akashi, and S. Hasegawa (2000) “Complete decomposition of biological waste sludge by thermophilic aerobic bacteria” Wat. Sci. and Technol. 42:81-88 Sharp, R. J., P. W. Riley, and D. White (1992) “Heterotrophic thermophilic Bacilli” CRC Press. Inc. Shiota, N., A. Akashi, and S. Hasegawa (2002) “A strategy in wastewater treatmentprocess for significant reduction of excess sludge production” Wat. Sci. and Technol. 45:127-134 Smets, B. F., A. R. Jobbagy, M. Cowam, and C. P. L. Grady (1996) “Evaluation of Respirometric Data: Identification of Features That Preclude Data Fitting with Existing Kinetic Expressions” Ecotoxicol. Environ. Safety 33:88-99 Stähl, S. and C. Ljunger (1976) “Calcium uptake by Bacillus stearothermophilus: a requirement for thermophilic growth” FEBS Lett 63:184-7 Sűrűcű, M. H., E. S. K. Chian, and R. S. Engelbrecht (1976) “Aerobic thermophilic treatment of high strength wastewaters” Journal of the Water Pollution Control Federation 48:669-679 Ugwuanyi, J. O., L. M. Harvey, and B. McNeil (2005) “Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste” Bioresource Technol. 96:707-719 Ugwuanyi, J. O., L. M. Harvey, and B. McNeil (2008) “Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation” Biores. Technol. 99:3279-3290 US EPA (1992) “Control of pathogens and vector attraction in sewage treatment” EPA/625/R-92/013 Visvanathan, C., M. K. Choudhary, M. T. Montalbo, and V. Jegatheesan (2007) “Landfill leachate treatment using thermophilic membrane bioreactor” Desalination 204:8-16 Vogelaar, J. C. T., A. Klapwijk, J. B. V. Lier, and W. H. Rulkens (2000) “Temperature effects on the oxygen transfer rate between 20 and 55℃” Wat. Res. 34:1037-1041 Yao, C., S. Tang, Z. He, and X. Deng (2005) “Kinetics of lipase-catalyzed hydrolysis of olive oil in AOT/isooctane reversed micelle” J. Molecular Catalysis B: Enzymatic 35:108-112 Yilmaz, T., A. Yuceer, and M. Basibuyuk (2008) “A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater” Bioresource Technol. 99:156-163zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5499-
dc.description.abstract摘 要 本研究以桃園縣觀音工業區某食品公司的高溫油脂污泥為菌種來源,經實驗室以小規模反應槽長期馴養後,利用純種培養技術分離純化菌株,並委託某生物科技公司將其基因序列定序,將定序結果上NCBI網站比對可能菌株,並對照傳統微生物鑑定實驗結果以確認菌株。確認菌株後,以橄欖油做為基質,利用不同基質濃度的批次實驗,探討高溫油脂分解菌的反應動力,並以實驗所得結果比對文獻中的微生物生長動力模式,探討可用於評估高溫好氧油脂分解菌的反應動力模式。 純種培養所分離純化的兩株菌,將菌種基因序列定序結果上NCBI網站比對,並與傳統微生物實驗對照後,分別為Thermus sp.與Microbacterium sp.。 以Thermus sp.進行批次實驗,基質濃度介於30 ~ 30000 mg/L TOC時,隨著基質濃度的提高Thermus sp.的µinitial亦有增加的趨勢,但當基質濃度大於3000 mg/L TOC時,µinitial呈現下降的趨勢,推測是因基質濃度高於一限制值後,高基質濃度反而會抑制微生物生長。批次實驗基質濃度為30、300、3000、30000 mg/L TOC,而µinitial分別為0.97、3.89、3.66、1.59 mg-cell/mg-cell-day。 將批次實驗結果套用文獻中的模式,利用Andrews的抑制方程式以數值分析所得結果µmax為4.95 mg-cell/mg-cell-day ,Ks為97 mg/L TOC,Ki為12000 mg/L TOC;利用變異數分析,f值為0.56,大於顯著值0.53,顯示Andrews方程式可適用於評估本研究系統中的反應動力參數。zh_TW
dc.description.abstractThe research utilized the thermophilic wasted sludge colleeded from a food company in Guanyin Industrial Park as the micbacterial resource. After the acclionation with a lab-scale reactor for more than six months, obtaining the pure culture strain of bacteria was identified through the process of gene mapping by a bio-technological company. Then, the result of was used in comparison with some possible strains of bacteria on NCBI website. The results of traditional microbial identification experiments were also used to confirm the strain of bacteria. After the identification process, olive oil was used as the substrate for a series of batch experiments at different substrate concentrations. This research employed some microbial growth kinetic models to estimates the growth and decay of the bacteria obtained from the pure culture study. Two strains of bacteria was identified from the pure culture study were identified with the results on NCBI website and the results from traditional microbial identification experiments. Two species were identified, Thermus sp. and Microbacterium sp.. Pure Thermus sp. was used as the pure culture in batch experiment at the substrate concentrations in the range of 30 to 30000 mg/L TOC. The results indicated an increase in the substrate concentrations increased the µinitial when Thermus sp. was used as the microorgomisun. When the substrate concentration was higher than 3000 mg/L TOC, µinitial significant decreased because of the effect of substrate inhibition. When the concentrations of the substrate were 30, 300, 3000, and 30000 mg/L TOC, µinitial was 0.97, 3.89, 3.66, and 1.59 mg-cell/mg-cell-day, respectively. This study used Andrews' inhibition equation to simulate the result of the batch experiments. The values of µmax 4.95 mg-cell/mg-cell-day, Ks 97 mg/L TOC, and Ki were 12000 mg/L TOC, respectively. The result showed Andrew's equation was adaptable to estimate the kinetic parameters in this system.en_US
dc.description.tableofcontents摘要 i Abstract ii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 緒論 1 1-1 研究緣起 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1 高溫好氧處理 3 2-1-1 高溫好氧處理定義 3 2-1-2 高溫好氧處理優點 7 2-1-3 高溫好氧處理缺點 11 2-2 油脂廢水與油脂廢水好氧分解過程 16 2-2-1 產生油脂廢水之工業 16 2-2-2 油脂的性質 17 2-2-3 油脂好氧分解 19 2-3 微生物反應動力 22 2-3-1 Michaelis – Menten Kinetics 22 2-3-2 單一基質限制生長 24 2-3-3 單一基質抑制生長 26 2-3-4 數值分析參數值求法 28 2-4 高溫菌特性 29 第三章 實驗方法 32 3-1 研究架構 32 3-2 實驗藥品 34 3-3 高溫菌種 35 3-3-1 高溫菌種來源 35 3-3-2 高溫菌之菌種分離純化 35 3-3-3 高溫菌種保存及培養方法 35 3-4 儀器設備 36 3-4-1 液相層析儀 36 3-4-2 固體總有機碳分析儀 36 3-4-3 其他儀器設備 37 3-5 實驗準備 38 3-5-1 實驗用水 38 3-5-2 實驗菌種 38 3-5-3 主要基質 38 3-5-4 無機營養鹽 38 3-5-5 液相層析儀流洗液配製 39 3-5-6 實驗物品及器具的準備與清洗 39 3-6 分析項目及方法 41 3-6-1 菌體濃度測定 41 3-6-2 脂肪分解酵素活性分析 42 3-6-3 總有機碳與溶解性有機碳分析 45 3-6-4 甲、乙、丙、丁、戊酸之分析 45 3-7 實驗流程 46 3-7-1 菌種基因序列定序 46 3-7-2 傳統微生物鑑定 46 3-7-3 高溫油脂分解菌反應動力參數實驗 54 第四章 結果與討論 56 4-1 菌種基因序列定序結果 56 4-2 傳統微生物鑑定結果 58 4-2-1 菌落特徵觀察試驗結果 58 4-2-2 染色反應試驗結果 58 4-2-3 胞外酵素活性分析試驗結果 60 4-3 菌種基因序列定序NCBI比對的可能菌種與傳統微生物鑑定對照結果 62 4-3-1 C菌株對照結果 62 4-3-2 Y菌株對照結果 62 4-4 高溫油脂分解菌生物降解批次實驗 64 4-4-1 不同基質濃度下Thermus sp. (C菌株)生長情形 64 4-5 Thermus sp.(C菌株)反應動力參數 75 4-5-1 不同油脂濃度下Thermus sp.比生長速率 75 4-5-2 Thermus sp.反應動力參數求法 77 第五章 結論與建議 81 5-1 結論 81 5-2 建議 83 第六章 參考文獻 84 附錄 菌種基因序列定序基因圖譜zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200813345600en_US
dc.subjectThermophilicsen_US
dc.subject高溫菌zh_TW
dc.subjectreaction kineticen_US
dc.subjectThermus sp.en_US
dc.subjectMicrobacterium sp.en_US
dc.subject反應動力zh_TW
dc.subjectThermus sp.zh_TW
dc.subjectMicrobacterium sp.zh_TW
dc.title高溫好氧油脂分解菌動力參數研究zh_TW
dc.titleA Kinetic Parameter Study of a Thermophilic Aerobic System Treating High Strength Oily Wasterwatersen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.