Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5546
標題: 重金屬污染農地施用生物污泥及鎘鉛交互作用對小白菜生長及鎘累積濃度之影響
Effects of Biosolids application on the heavy metal uptake and the interaction of cadium and lead on the growth and Cd accumulation of cabbage
作者: 王素梅
Wang, Su-Mei
關鍵字: Soil pollution;土壤污染;heavy metal;biosolids (sludge);Chinese cabbage;重金屬;污泥;小白菜
出版社: 環境工程學系所
引用: 參考文獻 王銀波、廖乾華(1999),國外農作物中重金屬之限量標準。農作物中重金屬監測基準資料之建立,第61-72頁,台灣省農業藥物毒物試驗所。 台灣省環境保護處(1989),「土壤污染調查研究報告彙編(第二輯)」。 行政院環境保護署(2003),土壤重金屬檢測方法-王水消化法,環署檢字第0920047102號(NIEAS321.63B)。 行政院環境保護署(1994),土壤中陽離子交換容量─醋酸銨法,環署檢字第00529號(NIEA S201.60T)。 行政院環境保護署土壤及地下水污染整治基金管理委員會,「95整治年報」,環保署土污基管會網站 http://ww2.epa.gov.tw/SoilGW。 行政院環境保護署(2002),「農地土壤重金屬調查與場址列管計畫-108公頃農地土壤重金屬調查與場址列管計畫」。 行政院環境保護署(2002),「農地土壤重金屬調查與場址列管計畫-111公頃農地土壤重金屬調查與場址列管計畫」。 李春樹(2003),「銅鋅鉛在污染土壤中之化學型態及其萃取性研究」,博士論文,國立成功大學環境工程學系。 李哞(1988),「下水道污泥對矮牽牛和細葉萬壽菊生長、開花與礦物成分之影響」,中國園藝,34:188-198頁。 李國欽、林浩潭(1996),「農地污染及其防治」,臺灣省農業藥物毒物試驗所技術專刊。 林浩潭(1991),「以作物中重金屬容許含量推算土壤中重金屬容許含量之探討」,碩士論文,國立中興大學。 林浩潭(2001),「土壤污染偵測與防治」,行政院農業委員會農業藥物毒物試驗所。 林浩潭、翁愫慎及李國欽(2002) 食品中重金屬含量及管制標準。第13-28頁。 林木連(1995),「土壤肥料」,地景企業股份有限公司,第13-89頁。 卓英仁(1988),「我國土壤污染現況分析及防治政策之研究」,環保通訊雜誌社。 柯鴻慶(2004),「以植物萃取法處理銅鉛鎘污染之土壤」,碩士論文,嘉南藥理科技大學環境工程與科學系。 洪明龍(1996),「家庭廚餘與下水污泥共同堆肥資源化之研究」,碩士論文,國立台灣大學環境工程學研究所 洪明宏(2002),「下水污泥綠農地應用及環境限制之研究」,碩士論文,國立台北科技大學環境規劃與管理研究所。 孫岩章(1985),環境污染及破壞對植物之影響,科學農業33(2-4)第97-122 頁。 翁仁憲、許苑培、郭孚燿、林文助(1999),「氣象因子對小白菜生長速率之影響」中華農業氣象,第六卷,第一期,第7-13頁。 陳慎德(2003),「淺論我國農地土壤重金屬污染處理之現況與問題」,台灣土壤及地下水環境保護協會簡訊第9期。 陳雍程(2000),「土壤樣品鉛、鎘的逐步萃取」,碩士論文,國立中興大學環境工程研究所。 陳躍升(2001),「利用砂箱實驗探討電動力Fenton法處理受酚污染土壤」,碩士論文,國立中山大學環境工程研究所。 黃正介(2002),「施用下水污泥對土壤重金屬含量變化與作物生長之影響」,碩士論文,國立屏東科技大學環境工程與科學系。 富民,(1979),「農友」第十三卷,第六期,第24-25頁。 湯政明(2007),「添加幾丁聚醣對於受重金屬污染土壤植物復育影響之個案研究」,碩士論文,朝陽科技大學環境工程與管理系。 經濟部工業局資源化工業網(2003),「再利用技術資訊-個案介紹-有機污泥資源化技術」。 經濟部工業局(2004),「污泥處理技術彙編」,第128-142、182-183頁。 彰化縣環境保護局(2004),「彰化縣農地土壤重金屬含鉻銅鋅鎳(不含鎘)污染控制場址之污染改善計畫」總成果報告。 彰化縣環境保護局(2005),「彰化縣農地土壤重金屬含鎘污染控制場址之污染改善計畫」。 彰化縣環境保護局(2005),「彰化縣農地土壤污染改善執行成果」。 廖本男(2000),「添加下水道污泥之台灣土壤銅鋅的型態分佈與生物有效性」,碩士論文,國立台灣大學農業化學研究所。 廖自基(1989),「環境中微量重金屬元素的污染危害與遷移轉化」,第一章1-30頁、第三章69-100頁,科學出版社。 劉泰銘(2007),「鎘米相關因應措施之初步探討」,台灣土壤及地下水環境保護協會簡訊第24期。 劉黔蘭、王銀波(1990),「鎳污染台灣各類土壤與作物生長關係之研究」,第二屆土壤污染防治研討會論文集,第243-255頁。 賴鴻裕、盧至人(2007),「植生復育重金屬污染土壤—國內研究之回顧及大豆生質能應用之探討」,台灣土壤及地下水環境保護協會簡訊第22期。 賴鴻裕、陳尊賢(2003),「重金屬污染土壤之植生復育技術與案例分析」,第八屆土壤及地下水污染整治研討會論文集。 賴鴻裕(2004),「EDTA對促進受重金屬鎘鋅及鉛污染土壤植生復育之研究」,博士論文,國立台灣大學農業化學研究所,第34、39-46頁。 賴俊成(2002),「混合酸淋洗處理重金屬污染土壤之研究」,碩士論文,國立雲林科技大學環境與安全工程系。 毆育憲(2000),「土壤中重金屬污染物之生物有效性意義研究」碩士論文,逢甲大學土木及水利工程研究所環工組。 歐陽嶠暉、許鎮龍、藍文忠(1998),都市污水處理廠污泥處理與資源化再利用之研究,第八屆下水道技術研討會論文集,台北市,第19-33頁。 鍾仁賜、蘇育荻、林鴻淇(1992),「盆栽水稻評估污泥、堆肥之殘餘養分生物有效性」,中國農業化學會誌第386-395頁。 Adriano, D. C, 1986. Cadmium. p.106-155. In D. C. Adriano(ed.)Trace Elements in the Terrestrial Environment. Spring-Verlag Inc., New York, USA. Bidwell, A. M. and R. H. Dowdy, 1987. Cadmium and zinc availability to corn following termination of sewage sludge applications. J. Environ. Qual. 16, 438-442. Brallier, S., R. B. Harrison, C. L. Henry, and X. Dongsen, 1996. Liming effects on availability of Cd, Cu, Ni, and Zn in a soil amended with sewage sludge 16years previously. Water Air&Soil Pollut. 86, 195-206. Bremner, J. M., 1970. Regular Kjeldahl method. p. 610-616. In A. L. Page(ed.)Method of Soil Analysis. Part 2. Chemical and Microbiological Properties. Academic Press, NY, USA. Carlson, R. W. and F. A. Bazzaz, 1977. Growth reduction in american sycamore(Plantanus Occidentalis L.)caused by Pb-Cd interaction. Environ Pollut. 12, 243-253. Carlson, R. W. and G. L. Rolfe, 1979. Growth of ryegrass and fescue as affected by lead-cadmium-fertilizer interaction. J. Environ. Qual. 8, 348-352. Chaney, R. L, 1980. Health risks associated with toxic metal in municipal sludge. p. 59-83. In G. Bitton et al.(eds.) Sludge-health risks of land application, Ann Arbor Science Publ, MI, USA. Chaney, R. L, 1990. Twenty years of land application research. BioCycle 31, 54-59. Chaney, R. L, 1994. Trace metal movement. Soil-plantsystems and bioavailability of biosolids-applied metals. p. 27-31. In C. E. Clapp et al.(eds.)Sewage Sludge Land Utilization and the Environment.American Society of Agronomy, Madison, WI, USA. Chaudri, A. M., M. G. A. Celine, S. H. Badawy, M. L. Adams, S. P. cGrath,and B. J. Chambers, 2001. Cadmium content of wheat grain from long-termfield trial experiment with sewage sludge. J. Environ. Qual. 30, 1575-1580. Corey, R. B., L. D. King, C. L. Hing, D. S. Fanning, J. J. Street, and J. M.Walker, 1987. Effectsof sludge properties on accumulation of trace elementsby crops. p. 25-51. In A. L. Page et al. (eds.) Land application of sludge.Lewis, Chelsea, MI, USA. Gardiner, D. T., R. W. Miller, B. Badamchian, A. S. Azzari, and D. R. Sisson, 1995. Effects of repeated sewage sludge application on plant accumulation of heavy metal. Agri. Ecosyst. Environ. 55, 1-6. Gee, G. W. and J. W. Bauder, 1986. Particle-size analysis. p. 383-412. In A. Klute et al.(eds.) Methods of Soil Analysis. Part 1. Physical and Mineralogical Method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Harmon, M. E. and K. Lajtha, 1999. Analysis of detritus and organic horizons for mineral and organic constitutes. p. 143-165. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe, and P. Sollins(eds.)Standard Soil Methods for Long-term Eclological Research. Oxford University Press, Inc., New York, USA. Hassett, J. J., J. E. Miller, and D. E. Koeppe, 1976. Interaction of lead and cadmium on maize root growth and uptake of lead and cadmium by roots. Environ. Pollut. 11, 297-302. Helmke, P. A. and D. L. Sparks, 1996. Lithium, Sodium, Potassium, Rubidium, and Cesium p. 551-574. In J. M. Bartels(ed.)Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America(SSSA)Book Series No. 5, 3rd edition. ASA and SSSA, Madison, WI, USA, Agronomy Monograph 9. Jarvis, S. C., H. P. Jones, and M. J. Hopper, 1976. Cadmium uptake from solution by plants and its transport from roots shoots, Plant Soil 44, 179-191. Jing, J. and T. J. Logan, 1992. Effects of sewage sludge cadmium concentration on chemical extractability and plant uptake. J. Environ. Qual.21, 73-81. Kuo, S, 1996. Phosphorus. p. 869-919. In J. M. Bartels(ed.)Methods of Soil Analysis, Part 3.Chemical Methods Soil, Science Society of America(SSSA) Book Series No. 5, 3rd edition. ASA, Inc, and SSSA, Inc, Madison, WI, USA. McBride, M. B, 1995. Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective? J. Environ. Qual. 24, 5-18. McKenna, I. M., R. L. Chaney, and F. M. Williams, 1993. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadimium in lettuce and spinach. Environ. Pollut. 79, 113-120. McLean, E. O, 1982. Soil pH and lime requirement. p. 199-224. In A. L. Page et al.(eds.)Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. Nye, P. H. and P. B. Tinker, 1977. Solute movement in the soil-root system Studies in Ecology, Blackwell Scientific Publications, Oxford, England, Vol.4, 127-288。 Peterson, A. E., P. E. Speth, R. B. Corvey, T. H. Wright, and P. L. Schlecht, 1994. Effect of twelve years of liquild digested sludge application on the soil phosphorus level. p. 237-247. In C. E. Clapp et al.(eds.)Sewage Sludge:Land Utilization and the Environment. ASA, CSSA, and SSSA, Madison, WI, USA. Pichtel, J. and M. Anderson, 1997. Trace metal bioavailability in municipal solid waste and sewage sludge composts. Bioresource Technol. 60, 223-229. Planquart, P., G.Bonin, A. Prone, and C. Massiani, 1999. Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts, application to low metal loadings. Sci. Total Environ. 241, 161-179. Schmidt, J. P, 1997. Understanding phytotoxicity thresholds for trace elements in land-applied sewage sludge. J. Environ. Qual. 26, 4-10. Viamis, J. D., E. Willams, J. E. Corey, A. L. Page, and T. J. Ganje, 1985. Zine and cadmium uptake by barley in field plots fertilized seven years with urban and suburban sludge. Soil Sci. 139, 81-87. Wong, J. W. C., K. M. Lai, D. S. Su, and M. Fang, 2001. Availability of heavy metals for Brassica chinensis growth in an acidic loamy soil amended with a domestic and an industrial sewage sludge. Water Air&Soil Pollut. 128, 339-353. Wong, J. W. C., G. X. Li, and M. H. Wong, 1996. The growth of Brassica chinensis in heavy metal contaminated sewage sludge compost from Hong Kong. Bioresource Technol. 58, 309-313. Wong, M. K., G. K. Chuah, K. P. Ang, L. L. Koh, and C. S. Hew, 1984. The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environ. Exp. Bot. 24, 189-195.
摘要: 
受重金屬污染之土壤雖可利用翻土稀釋法或是酸洗法等技術加以整治,將土壤重金屬之濃度降低至符合法規標準,但由於此兩種技術屬於工程方法,對於土壤之基本性質及土壤品質(soil quality)具有破壞作用,整治後的農地不宜馬上投入生產的行列,需以適當之地力及肥力回復處理,使農地可以繼續耕作。污泥含有有機質、氮、磷、鉀與其他微量元素等,施用污泥可提高土壤肥力,目前國內污水廠所產生的污泥,最終處置方式以衛生掩埋為主,但台灣地區高溫多雨且地狹人稠,掩埋空間逐漸不足,且有潛在污染物滲漏至地下水的風險。歐美諸多國家在污泥的管理上,已傾向將污泥資源化處理之土地施用方式為主,台灣若能將之施用於整治後休耕農地,可達到增進土壤肥力及污泥資源化回收再利用之目的。本研究取彰化縣和美鎮受重金屬污染農田之土壤,人工配製成為不同濃度之鎘、鉛或鎘鉛污染土壤,並於土壤中添加污泥後種植小白菜,探討施用污泥及鎘鉛交互作用對小白菜生長及累積鎘濃度之影響。

研究結果發現,在Cd-Pb 為 20-0 mg/kg之土壤中,添加5%污泥可使小白菜地上部之生物量由1.60±0.27上升至2.55±0.17 g/plant (1.6倍),但污泥亦會使地上部累積之鎘濃度、鎘總移除量及生物濃縮係數(BCF)增加,因此,如欲在農地土壤施用污泥,其土壤重金屬濃度須符合土壤污染管制標準,才不會導致食用作物小白菜累積過高之鎘。土壤添加鉛會使小白菜地上部之鎘濃度上升,與單獨只含Cd為 5 mg/kg之土壤比較,在Cd-Pb 為 5-500 mg/kg之土壤中,小白菜地上部之鎘濃度由8.8±0.92上升至11.86±2.52 mg/kg-plant (1.3倍);在Cd-Pb 為 20-2000 mg/kg之土壤中,小白菜地上部之鎘濃度由36.4±9.83 (Cd-Pb 為 20-0 mg/kg)上升至101.91±25.13 mg/kg-plant (2.8倍)。試驗結果顯示,鉛會促進植體累積鎘,鉛對鎘之協同作用會使植物地上部之鎘濃度增加,並造成地上部生物量下降,其生物量由1.6±0.27下降至1.5±0.27 g/plant。本試驗結果亦顯示,在土壤鎘濃度大於5 mg/kg之土壤中種植小白菜,其地上部鎘濃度皆已達毒害濃度及超過每人每日攝取量,食用後會對人體造成不良影響。

Soil polluted by heavy metals can be remedied through the technologies, such as soil mixing and dilution or soil acid washing. These methods could reduce the heavy metal concentrations and the uptake by plants. After the remediation, the concentrations of heavy metals could meet the soil standards. However, these two technologies are engineering methods, it may destroy the nature and the quality of soil. The remedied agricultural land is not supposed to be used for edible plant production immediately. It needs further proper restoration process to improve its fertility to make it agriculturable. Biosolids (sludge) contain abundant organic matters, nitrogen, phosphorus, potassium, and other trace elements. Applying biosolids (sludge) on soils can enhance the soil fertility. So far, in Taiwan, the most popular method to dispose the sewage sludge is sanitary landfill. However, the space for landfill is getting less and less. Especially, Taiwan is an area with high-temperature, space-limited, and dense population. Landfill is no more an acceptable method to dispose the sludge. There is also a risk for the operation of landfill. that is the potential of groundwater pollution associated with the landfill leachate. For the biosolids management on most of countries in Europe and United States, they tend to recycle biosolids (sludge) applying on farm land. We propose an alternative disposal method to reuse biosoilds. We suggested that biosolids could be applied onto the remedied and fallow farm land. These method can attain the purpose of enhancing the soil fertility and biosolids (sludge) recycling. The heavy metal contaminated soil collected from Changhua County(和美鎮) was used as the tested soil in this study. The soil was artificially added Cd, Pb, or both Cd and Pb at various concentrations. In addition to study the effect of the presence of Pb on the Cd uptake by cabbage this study also focused on the application of biosoids on the Cd uptake and its effect on the cabbage growth. The accumulation of Cd in cabbage was also studied.
The results indicated that in the soil with Cd-Pb at 20-0 mg/kg, the application of 5% biosolids increased cabbage biomass from 1.60±0.27 to 2.55±0.17 g/plant (1.6 times). However, the addition of biosolids (sludge) also increased the accumulation of cadmium, total removed cadmium, and bioconcentration factor (BCF). Therefore, when biosolids were applied on farmland, the heavy meal uptake and accumulation must be monitored in order to avoid the over accumulated cadmium in edible cabbage. Addition of lead on the soil could increase the Cd uptake by cabbage. Using Cd at 5 mg/kg as a comparison, the soil with Cd-Pb at 5-500 mg/kg, Cd concentration in cabbage increased from 8.8±0.92 to 11.86±2.52 mg/kg-plant (1.3 times); in the soil with Cd-Pb at 20-2000 mg/kg, Cd concentration in cabbage increased from 36.4±9.83 (Cd-Pb at 20-0 mg/kg) to 101.91±25.13 mg/kg-plant (2.8 times). The test results showed that the presence of lead in soil would enhance the uptake and accumulation of Cd in cabbage. It would also result in reduction on the biomass production of cabbage. The cabbage biomass decreased from 1.6±0.27 to 1.5±0.27 g/plant.This test results also showed, that planting cabbage in the soil with Cd concentration over 5 mg/kg, Cd accumulation would reach the concentrations to an unacceptable level and would be over daily uptake per person. It would have adverse effect on human body after taking the cabbage harvested from the farm land with the lead concentration over 5 mg/kg in the soil.
URI: http://hdl.handle.net/11455/5546
其他識別: U0005-3107200813321100
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.