Please use this identifier to cite or link to this item:
標題: 戴奧辛模擬系統改善之研究-排放量推估及氣固相機制
Development of dioxin system - emission inventory and gas/particle partition
作者: 林徽雅
Lin, Huei-Ya
關鍵字: GTx, Dioxin, Gas/particle partition, an extension of an emission inventory;戴奧辛;高斯軌跡傳遞係數模式;氣固相分佈;排放量清單
出版社: 環境工程學系所
引用: Alcock, R. E., Sweetman, A. J., Jones, K. C., 2001. A congener-specific PCDD/F emissions inventory for the UK: do current estimates account for the measured atmospheric burden? Chemosphere 43, 183–194. Atkinson, R., 1997. Atmospheric chemistry of PCBs, PCDDs and PCDFs. Environmental Science and Technology 6, 53-72. Ballschmiter, K., Buchert, H., Niemczyk, R., Munder, A., Swerev, M., 1986. Automobile exhausts vs. municipal waste incineration as sources of the polychloro-dibenzodioxins (PCDD) and furans (PCDF) found in the environment. Chemosphere 15, 901–915. Brubaker, WW Jr, Hites, RA, 1997. Polychlorinated dibenzo-p-dioxins and dibenzofurans: gas phase hydroxyl radical reactions and related atmospheric removal. Environ. Sci. Technol. 31,1805-1810. Buekens, A., Huang, H., 1998. Review: Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxins/Furans in Municipal Waste Incineration. Journal of Hazardous Materials, vol. 62, pp. 1-33. Chang, M. B., Weng, Y. M., Lee, T. Y., Chen, Y. W., Chang, S. H., Chi, K. H., 2003. Sampling and analysis of ambient dioxins in northern Taiwan. Chemosphere 51, 1103–1110. Chao, M. R., Hu, C. W., Chen, Y. L., Chang-Chien, G.. P., Lee, W. J., Chang, L. W., Lee, W. S. and Wu K. Y., 2004. Approaching gas–particle partitioning equilibrium of atmospheric PCDD/Fs with increasing distance from an incinerator: measurements and observations on modeling. Atmospheric Environment 38, 1501-1510. Clark, N. N., Kern, J. M., Atkinsson, C. M., Nine, R. D., 2002. Factors Affecting Heavy-duty Diesel Vehicle Emissions. Journal of Air and Waste Management Association 52, 84-94. Draxler, R. R., 1987. Sensitivity of a trajectory model to the spatial andtemporal resolution of the meteorological data during CAPTEX. Journal of Climate and Applied Meteorology 26, 1577–1588. Eitzer, B. D., Hites, R. A., 1989. Polychorinated dibenzo-p-dioxins and dibenzofurans in the ambient atmospheric of Bloomington, Indiana. Environmental Science and Technology 23, 1389-1395. Finizio, A., Mackay, D., Bidleman, T., Harner, T., 1997. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment 31, 2289-2296. Govers, H. A. J., Krop, H. B., 1998. Partition constants of chlorinated dibenzofurans and dibenzo-p-dioxins. Chemosphere 37, 2139–2352. Gullett, B., Touati, A., Oudejans, L., 2008. PCDD/F and aromatic emissions from simulated forest and grassland fires. Atmospheric Environment 42, 7997-8006. Harner, T., Biedleman, T. F., 1998. Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science and Technology 32, 1494-1502. Holzworth, G. C., 1972. Mixing Heights, Wind Speeds and Potential for Urban Air Pollution Through Contiguous United States. AP-101, US EPA, Raleigh, NC. Junge, C. E., 1997. In: Suffet I. H. (Ed.), Fate of pollutants in the Air and Water Environments, Part I. Wiley, New York, pp- 7-26. Kahl, J. D., Samson, P.J., 1986. Uncertainly in trajectory calculations due to low resolution meteorological data. Journal of Climate and Applied Meteorology 25, 1816–1831. Kao, J. H., Chen, K. S., Tsai, C. H., Li, H. W., Chang-Chien, G. P., 2007. Effects of burnings of wax apple stubble and rice straw on polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in air and soil. J. Air Waste Manag. Assoc. 57, 457-464. Kwok, E. S. C., Atkinson, R., Arey, J., 1995. Rate constants for the gas phase reactions of the OH radical with dichlorobiphenyls, 1-chlorodibenzo-p-dioxins, 1,2-dimethoxybenzene, and diphenyl ether: estimation of OH radical rate constants for PCBs, PCDDs and PCDFs, Environ. Sci. Technol. 29, 1591-1598. Lin, L. F., Lee, W. J., Li, H. W., Wang, M. S., Chang-Chien, G. P., 2007. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 68, 1642–1649. Lohmann, R., Jones, K. C., 1998. Dioxins and furans in air and deposition:A review of level, behaviour and processes. Science of the Total Environment 219, 53-81. Meng, F., Zhang, B., Gbor, P., Wen, D., Yang, F., Shi, C., Aronson, J., Sloan, J., 2007. Models for gas/particle partitioning transformation and air/water surface exchange of PCBs and PCDD/Fs in CMAQ. Atmos. Environ. 41, 9111-9127. Muto, H., Saitoh, K., Takizawa, Y., 1993. Polychlorinated dibenzo-p-dioxins and dibenzofurans in rice straw smoke generated by laboratory burning experiment. Environ. Contam. Toxicol. 50, 340-347. Oh, J. E., Choi, J. S., Chang, Y. S., 2001. Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans in atmosphere; evaluation of predicting models. Atmos. Environ. 35, 4125-4134. Padro, J., Hartog, G. D., Neumann, H. H., 1991. An investigation of the ADOM dry deposition module using summertime O3 measurements above a deciduous forest. Atmospheric Environment 25A, 1689–1704. Pankow, J. F., 1987. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol. Atmospheric Environment 21, 2275–2283. Pankow, J. F., 1991. Common y-intercept and single compound regressions of gas-particle partitioning data. Atmospheric Environment 25A, 2229–2239. Pankow, J. F., Biedleman, T. F., 1992. Interdepence of the slope and intercepts grom log-log correlations of measured gas-particle partitioning and vapor pressure-1. Theory and analysis of available data. Atmospheric Environment 26A, 1071–1080. Rolph, G. D., Draxler, R. R., 1990. Sensitivity of three-dimensional trajectories to the spatial and temporal densities of the wind field . Journal of Applied Meteorology 29, 1043–1054. Safe, S., Hutzinger, O., Hill, T. A., 1990. Polychlorinated dibenzo-p-dioxins and -furans (PCDDs/PCDFs): Sources and environmental impact, epidemiology, mechanisms of action, health risks, Springer-Verlag, New York. Schröder, J., Welsch-Pausch, K., McLachlans, M. S., 1997. Measurement of atmospheric deposition of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) to a soil. Atmos. Environ. 31, 2983-2989. Scire, J. S., Robe, F. R., Fernau, M. E., Yamartino, R. J., 2000. A user’s guide for the CALMET meteorological model (version 5). Earth Tech., Inc., Concord, MA. Scott, B. C., 1981. Modeling of atmospheric wet deposition. In atmospheric pollutants in natural waters, ed. S.J. Eisenreich, Ann Arbor Science, Ann Arbor, Michigan, pp. 3-21. Sheu, H. L., Lee, W. J., Liow, M. C., Hsieh, L. T., Wu, C. C., 1996. Dry deposition of polycyclic aromatic hydrocarbons in the ambient air of a traffic intersection. J. Envir. Eng. 122, 1101-1109. Shih, M., Lee, W. S., Chang-Chien, G. P., Wang, L. C., Hung, C. Y., Lin, K. C., 2006. Dry deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air. Chemosphere 62, 411–416. Shih, S. I., Lee, W. J., Lin, L. F., Huang, J. Y., Su, J. W., Chang-Chien, G. P., 2008.. Journal of Hazardous Materials 153, 276–284. Shih, S. I., Wang, Y. F., Chang, J. E., Jang, J. S., Kuo, F. L., Wang, L. C., Chang-Chien, G. P., 2007. Comparisons of levels of polychlorinated dibenzo-p-dioxins/dibenzofurans in the surrounding environment and workplace of two municipal solid waste incinerators. J. Hazard. Mater. B137, 1817-1830. Slinn S.A., Slinn W. G. N., 1980. Predictions for particle deposition on natural waters. Atmospheric Environment 24, 1013–1016. Stohl, A., 1998. Computation, accuracy and applications of trajectories-a review and bibliography. Atmospheric Environment 32, 947–966. Tsuang, B. J., 2003. A Gaussian plume trajectory model to quantify the source/receptor relationship of primary pollutants and secondary aerosols: Part I. Theory. Atmos. Environ. 37 (28), 3981-3991. Tsuang, B. J., 2003. Analytical asymptotic solutions to determine interactions between the planetary boundary layer and the Earth‘s surface. J. Geophys. Res. – Atmospheres Vol. Tsuang, B. J., 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory. Atmospheric Environment 37, 3981-3991. Tsuang, B. J., Chao, C. P., 1999. Application of circuit model for Taipei City PM10 simulation. Atmos. Environ. 33, 1789-1801. Tsuang, B. J., Chao, J. P., 1997. Development of a circuit model to describe the advection-diffusion equation for air pollution. Atmos. Environ. 31, 639-657. Tsuang, B. J., Chen, C. L., Tu, C. Y., 2000. Vertical profiles of air pollutants measured from sampling bags by tethered balloon in Central Taiwan. Proceedings of the Australia-Taiwan joint symposium on environment modelling and management, pp7-13. Tsuang, B. J., Chen, C. L., Lin, C. H., Cheng, M. T., Tsai, Y. I., Chio, C. P., Pan, R. C., Kuo, P. H., 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part II—Case study. Atmospheric Environment 37, 3993-4006. Tsuang, B. J., Chen, C. L., Lin, C. H., Cheng, M. T., Tsai, Y. I., Chu, C. P., Pan, R. C., Kuo, P. H., 2003. A Gaussian plume trajectory model to quantify the source/receptor relationship of primary pollutants and secondary aerosols: Part II. Case Study. Atmos. Environ. 37 (28), 3993-4006. Tsuang, B. J., Chen, C. L., Pan, R. C., Liu, J. H., 2002. Quantification on source/receptor relationship of primary pollutants and secondary aerosols from ground sources - Part I. Theory. Atmos. Environ. 36 (3), 411-419. Tsuang, B. J., Lee, C. T., Cheng, M. T., Lin, Y. C., Lin, N. H., Chen, C. L., Kuo, P. H., 2003. A Gaussian plume trajectory model to quantify the source/receptor relationship of primary pollutants and secondary aerosols: Part III. Asian dust-storm periods. Atmos. Environ. 37 (28), 4007-4017. Tsuang, B. J., Wang, J. L., Chang, W. L. F., Cheng, M. T., Lin, M. D., 2002. Production, monitoring and simulation of VOC, O3 and aerosol over central Taiwan – Central Taiwan Air Quality Management Plan (CTAMP): Scientific Assessment,永續發展科技與政策研討會,台北市,行政院國家科學委員會永續發展推動委員會,27,297-344. U.S. EPA : Industrial Source Complex (ISC3) Dispersion Models- User’s Guide II. Description of Model Algorithms. EPA Publication No. EPA-454/B-95-003b, U.S. Environmental Protection Agency, Research Triangle Park, NC (1995). U.S. EPA, 1995. Industrial Source Complex (ISC3) Dispersion Models- User’s Guide II. Description of Model Algorithms. EPA Publication No. EPA-454/B-95-003b, U.S. Environmental Protection Agency, Research Triangle Park, NC. Vogg, H., Hunsinger, H., Merz, A., Stieglitz, L., 1992. Influencing the Production of Dioxin/Furan in Solid Waste Incineration Plants by Measures Affecting the Combustion as well as the Flue Gas Cleaning Systems. Chemosphere, vol. 25, pp. 149–152. Wang, L. C., Lee, W. J., Lee, W. S., Chang-Chien, G. P., Tsai, P. J., 2003. Characterizing the Emissions of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from Crematories and Their Impacts to the Surrounding Environment, Environ. Sci. Technol. 37, 62-67. Wang, L. C., Lee, W. J., Lee, W. S., Chang-Chien, G. P., Tsai, P. J., 2003. Major emission inventory of polychlorinated dibenzo-p-dioxins and dibenzofurans in Taiwan”, Environmental Health Perspectives (2003b) Prepared for Submission. Wesely, M. L., Hicks, B. B., 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34, 2261–2282. Yamasaki, H., Kuwata, K., Miyamoto, H., 1982. Effect of ambient temperature on aspects of airbone poly aromatic hydrocarbons. Environmental Science and Technology 16, 189-194. Yang, H. H., Lee, W. J., Chen, S. J., Lai, S. O., 1998. PAH Emission from Various Industrial Stacks. J. Hazard. Mater. 60, 159-174. Zhang, J., Morawska, L., 2002. Combustion source of particle : 2. Emission factors and measurement methods. Chemosphere, vol. 49, pp. 1059–1074. Seinfeld, J. H., 1986. Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons, Inc., New York, pp. 333-506. 中央氣象局(CWB),2007,網址: 。 中鼎工程股份有限公司(CTCI),2000,CTCI CORPORATION TEDs 5.1 archive。 中鼎工程股份有限公司(CTCI),2003,CTCI CORPORATION TEDs 6.1 archive。 中興工程顧問股份有限公司,2007,「固定污染源毒性空氣污染物(戴奧辛及重金屬)管制規範研擬.控制技術評估及排放清冊調查計畫」,EPA-95-FA12-03-A106,環保署/環保署期末修正稿。 中興工程顧問股份有限公司,2008,「固定污染源毒性空氣污染物(戴奧辛及重金屬)排放清冊調查及管制計畫」,EPA-96-FA12-03-A115,環保署/環保署期末報告。 內政部戶政司,2007,網址:。 日本環境省,2005,「ダイオキシン類」。 王柏人,2000,「軌跡模式探討戴奧辛污染源與受體點間之相關性研究」,碩士論文,台中,國立中興大學環境工程研究所。 王麒麟,2003,「污染源及大氣中戴奧辛/呋喃之特徵」,博士論文,台南,國立成功大學環境工程研究所。 交通部,2007,網址:。 杜佳穎,1999,「氣溫模式之發展與驗證」,碩士論文,台中,中興大學環工所。 侯孝中、李文智、林龍富、史順益、王琳麒、張簡國平,2008,「大氣中戴奧辛/呋喃之乾溼沉降特徵」,第十五屆國際氣交科技研討會。 張木彬,2002,「都市垃圾焚化爐及電弧爐煉鋼廠煙道排氣及灰份中戴奧辛濃度及物種分布研究」,NSC91-EPA-Z-008-001,國科會/環保署期末報告。 張雅筑,2008,「高斯軌跡模式應用於受體點戴奧辛指紋解析之研究」,碩士論文,台中,中興大學環境工程研究所。 莊秉潔,2006,「空氣品質模式認可申請文件資料-高斯軌跡傳遞係數模式系統」。 許乾忠,1997,「台中地區大氣懸浮微粒乾沈降之模式發展」,碩士論文,台中,中興大學環境工程研究所。 陳仕洲,2008,「移動性污染源排放廢氣中戴奧辛/呋喃之特徵」,碩士論文,台南,成功大學環境工程研究所。 陳燕秋、莊秉潔、杜佳穎,1997,「地表大氣間蒸散細述之研究」,第十四屆空氣污染控制技術研討會論文專輯,第786-791頁,台中。 黃耀輝,1997,「地表粗糙係數的量測」,學士論文,台中,中興大學環境工程研究所。 環保署全球資訊網(EPA),2007,網址:。 謝炎恭,2005,「空氣及環境介質中戴奧辛之特徵」,碩士論文,台南,成功大學環境工程研究所。
本研究主要目的為改善高斯軌跡煙流模式(Gaussian Trajectory transfer-coefficient model, GTx) 系統,進而模擬大氣中戴奧辛污染物濃度。以戴奧辛排放量(清單)推估及加入戴奧辛之氣固相轉換機制作為本研究探討的目標。
戴奧辛排放量之推估分成兩階段,其污染源包含固定源、交通源、溢散源及裸露地表揚塵。初步階段,排放量清單模擬結果顯示,其毒性當量的觀測值及模擬值相關係數(r)為0.2,其偏差值為±0.2%以內,但5月及6月會有高估的情形,推測裸露揚塵的污染源會受到降雨的影響,因此以雨量的多寡作為揚塵是否為污染源之判定指標。經採樣數據比對及統計發現,以雨量7×10-5 mm/s (約0.25 mm/hr)為界線判別裸露地表揚塵是否為受體點的污染源,而模擬數據及觀測數據的相關係數提高至0.4,其偏差值為±0.2%以內。而過去模式模擬戴奧辛污染物皆假設戴奧辛附著在PM2.5上,造成污染物易受到沉降機制,使得模擬結果低估,故本研究加入氣固相機制於模式中,氣相污染物不易沉降,模擬結果較接近真實的戴奧辛在大氣中狀況。初步整體模擬結果顯示,毒性當量濃度的模擬與觀測結果相近,固相指紋及總指紋有0.8以上的相關係數,但在氣相指紋模擬不佳。
第二階段的排放量推估是修正初步階段的排放量,利用原來的排放量做權重的分配,以OCDD物種為指標分門別類: (1)受檢驗的污染源並以OCDD為指標的類別、(2)檢驗的污染源且不以OCDD為指標的類別、(3)未檢驗的污染源並以OCDD為指標的類別、(4)未檢驗的污染源且不以OCDD為指標的類別及(5)揚塵污染源、(6)交通源及溢散源。第二階段的排放量主要以固定源為大宗,檢驗的污染源且不以OCDD為指標的工廠排放量是原來清單的15倍。模擬結果顯示固相分配比例上的相關係數佳,而固相指紋及總濃度指紋的相關係數也達0.8以上,甚至氣相指紋的相關係數提高至0.7以上,明顯顯示修正後的清單對氣相指紋模擬有較佳的呈現。

The source apportionment of dioxin compounds (a group of polyhalogenated compounds) is of interest because of its carcinogenicity to human and animals. Model approach can provide a quantitatively linkage between source and receptor of dioxin compounds. Nonetheless, the magnitudes of the simulated concentrations of dioxin compounds by a model are still underestimated, which was likely due to the lack of a comprehensive emission inventory. Besides, the assumptions made for simulating dioxin might not be appropriated. Therefore, this study is attempted to improve the modeling system of the Gaussian Trajectroy transfer-coefficient model (GTx) for dioxin simulation. The major improvements include an extension of an emission inventory and the introduction of a mechanism for gas/particle partition.
Two stages for the emission inventory modification were performed. In the first stage, four pollution sources, including stationary sources, traffic sources, combustion of agriculture waste, and dust from exposed surface, were modeling for the comparison of the predicted concentrations of dioxin with the observations at 19 stations. Using the GTx model cooperated with gas/particle partition mechanism, the results showed that the correlation coefficient of TEQ between observation and simulation is 0.2 0.2% with slightly overestimation. According to the statistical analysis, it was deduced that the amount of dust from exposed surface was affected by the precipitation and, consequently, the amount of precipitation was considered as an index for the exist dust from exposed surface. By adopting the critical value of rainfall of about 710-5 mm/s (0.25 mm/hr), the correlation coefficient increased up to TEQ to 0.4 0.2%. Moreover, after incorporating the mechanism for gas/particle partition, the prediction of TEQ was close to the observation and the correlation coefficients of a value of 0.8 was obtained in the particle and total fingerprint matching.
In the second stage, six weighted categories using OCDD as index were simulated. The results showed that the correlation coefficients of dioxin congener profiles in particle partition or gas plus particle partition were close to that mentioned in the first stage. But a great increase of correlation coefficient of dioxin congener profiles in individual gas partition reached about 0.7. The results of this study indicated that the predication efficiency of GTx model to simulate the dioxin concentration was improved with the modification of emission inventory and the addition of mechanism of gas/particle partition.
其他識別: U0005-0207200920334800
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.