Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5590
標題: 通量塔與繫留探空系統應用於臭氧及伴隨污染物之通量及成因解析
Application of the flux tower and the tethersonde system to the resolving of the causes of ozone and corresponding air pollutants episode
作者: 曾國信
Tseng, Kuo-Hsin
關鍵字: Tethersonde system;繫留探空系統;Eddy covariance system;Ozone;Vertical profile;Nocturnal inversion;Backward trajectory;Aging;Conversion ratio;Photochemical index;Flux;渦流協變性系統;臭氧;垂直剖面;夜間邊界層;逆軌跡模擬;老化;轉化率;光化學指標;通量
出版社: 環境工程學系所
引用: Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Patz, H.W., Schafer, J., Stutz, J., Volz-Thomas, A., Platt, U. (2003). OH formation by HONO photolysis during the BERLIOZ experiment. J. Geophys. Res., 108, D4: 8247. Anandakumar, K. (2003). A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmos. Environ., 33: 3911-3918. Aneja, V.P., Li, Z., Das, M. (1994). Ozone Case Studies at High Elevation in the Eastern United States. Chemosphere. 29: 1711-1733. Aneja, V.P., Mathur, R., Arya, S.P., Li, Y., Murray, G.C., Jr., Manuszak, T.L. (2000). Coupling the Vertical Distribution of Ozone in the Atmospheric Boundary Layer. Environ. Sci. Technol. 34: 2324-2329. Anlauf, K.G., Mickle, R.E. and Trivett, N.B.A. (1994). Measurement of Ozone during Polar Sunrise Experiment 1992. J. Geophys. Res. 99: 25345-25353. Ang, B.W. and Pandiyan, G. (1997). Decomposition of energy-induced CO2 emissions in manufacturing. Energy Economics, 19: 363-374. Aoki, M., Machimura, T., Hideshima, Y., Obase, N., Wada, M., Satoh, T., (1994). A data acquisition system for evapotranspiration measurement in remote fields using mobile telephone and small DC generator. J. Agric. and Meteorol., 52: 605-608. Armentano, T.B. and Menges E.S. (1986). Patterns of changes in the carbon balance of organic soil wetlands of the temperate zone. Journal of Ecology. 74: pp. Atkinson, R. (1989). Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data, Monograph. 1: 1-246. Atkinson, R. (1990). Gas-phase tropospheric chemistry organic compounds: a review. Atmos. Environ. 24A: 1. Atkinson, R. (1991). Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref. Data, 20: 459-507. Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34: 2063-2101. Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T. (2000). Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Adv. Ecol. Res. 30: 114-175. Baldocchi, D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X.H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K.T.P., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S. (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. B. Am. Meteorol. Soc. 82(11): 2415-2434. Baldocchi, D.D., Hicks, B.B., Meyers, T.P. (1988). Measuring biosphere-atmosphere exchange of biologically related gases with micrometeorological methods. Ecology 69: 1331-1340. Baumbach, G. and Vogt, U. (1999). Experimental Determination of the Effect of Mountain-Valley Breeze Circulation on Air Pollution in the Vicinity of Freiburg. Atmos. Environ. 33: 4019-4027. Beckett, W.S. (1991). Ozone, air pollution, and respiratory health. The yale journal of biology and medicine, 64: 167-175. Begum, B.A., Biswas, S.K., Hopke, P.K. (2007). Source Apportionment of Air Particulate Matter by Chemical Mass Balance (CMB) and Comparison with Positive Matrix Factorization (PMF) Mmodel. Aerosol Air Qual. Res.7: 446-468. Berkowicz, R. and Prahm, L.P. (1982). Evaluation of the profile method for estimation of surface fluxes of momentum and heat. Atmos. Environ. 16: 2809-2819. Benson, S.M. and Surles, T. (2006). Carbon dioxide capture and storage: An overview with emphasis on capture and storage in deep geological formations. Proceeding of the IEEE. 94(10): 1795-1805. Bottenheim, J.W., Brickell, P.C., Dann, T.F., Wang, D.K., Hopper, F., Gallant, A.J., Anlauf, K.G. and Wiebe, H.A. (1997). Non-Methane Hydrocarbons and CO during PACIFIC '93. Atmos. Environ. 33: 2079-2087. Bouwman, A.F. (1991). Agronomic aspects of wetland rice cultivation and associated methane emissions. Biogeochem. 15: 65-88. Bowman, F.M. and Seinfeld, J.H. (1994). Ozone productivity of atmospheric organics, J. Geophy. Res. 99: 5309-5324. Bryant, E. (1997). Climate process and change. Cambridge. UK: Cambridge University Press. pp 209. Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F. (1971). Flux-Profile Relationships in the Atmospheric Surface Layer. J. Atmos. Sci. 28: 181-189. Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F. (1971). Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28: 181-189. Cao, M.K., Dent, J.B., Heal, O.W. (1995). Methane emissions from China''s paddyland. Agric. Ecosyst. Environ. 55: 129-137. Carter, W.P.L. (1990). A detailed mechanism for the gas-phase atmospheric reactions of organic compounds. Atmos. Environ. 24A: 481. Carter, W.P.L. (1994). Development of Ozone Reactivity Scales for Volatile Organic Compounds. J. Air Waste Manage. Assoc. 44: 881-899. Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Middleton, P., Wang, T. (1992). Ozone precursor relationships in the ambient air. J. Geophy. Res. 97: 6037-6055. Chang, C.C., Wang, J.L., Liu, S.C., Lung, S.C.C. (2006). Assessment of Vehicular and Non-vehicular Contributions to Hydrocarbons Using Exclusive Vehicular Indicators. Atmos. Environ. 40: 6349-6361. Chen, C.L., Tsuang, B.J., Tu, C.Y., Cheng, W.L., Lin, M.D. (2002). Wintertime Vertical Profiles of Air Pollutants over a Suburban Area in Central Taiwan. Atmos. Environ. 36: 2049-2059. Cheng, W.L. (2001). Synoptic weather patterns and their Relationship to High Ozone Concentrations in the Taichung Basin. Atmos. Environ. 35: 4971-4994. Cheng, W.L., Pai, J.L., Tsuang, B.J., Chen, C.L. (2001). Synoptic Patterns in Relation to Ozone Concentrations in West-Central Taiwan. Meteorol. Atmos. Phys. 78: 11-21. Chio, C.P., Cheng, M.T., Wang, C.F. (2004). Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Costal areas, Taiwan. Atmos. Environ. 38: 6893-6905. Chou, C. C.K., Liu, S.C., Lin, C.Y., Shiu, C.J., Chang, K.H. (2006). The Trend of Surface Ozone in Taipei, Taiwan, and Its Origins: Implications for Ozone Control Strategies. Atmos. Environ. 40: 3898-3908. Cicerone, R.J., and Shetter, J.D. (1981). Sources of atmospheric methane, measurements in rice paddies: a discussion. J. Geophys. Res. 86, 7203-7209. Cieslik, S.A. (2004). Ozone uptake by various surface types: a comparison between dose and exposure. Atmos. Environ. 38: 2409-2420 Colbeck, I. and Harrison, R.M. (1985). Dry Deposition of Ozone: Some Measurements of Deposition Velocity and of Vertical Profiles to 100 Metres. Atmos. Environ. 19: 1807-1818. Cole, V, Cerri, C., Minami, K., Mosier, A., Rosenberg, N., Sanerback, D. (1995). Agricultural options for mitigation of greenhouse gas emissions. In: R.A.J.T. Houghton, L.G. Meria Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell, Editors, Climate Change, Cambridge University Press, Cambridge, UK, 745-771. Comes, F.J., Forberich, O., Walter, J. (1997). OH field measurements: a critical input into model calculations on atmospheric chemistry. J. Atmos. sci. 54: 1886-1894. Comrie, A.C. (1994). A Synoptic Climatology of Rural Ozone Pollution at Three Forest Sites in Pennsylvania. Atmos. Environ. 28: 1601-1614. Cox, D.D. (1988). Approximation of Least Squares Regression on Nested Subspaces. Ann. Statist. 16: 713-732. CTCI Corporation (2000). Prework for Pursuing Total Load Control of Air Pollution and Standard Method Establishment for Estimating Air Pollutant Emissions. R.O.C. Environmental Protection Agency, Taipei, Taiwan, R.O.C. (in Chinese). CTCI, (2003). Update and Management for Air Pollution Emission Inventory and Estimation for Air Pollution Degradation of GNP. Report, Environmental Protection Administration- Taiwan, EPA-92-FA11-03-D039 (in Chinese). Cunnold, D, Alyea, F., Prinn R. (1978). A methodology for determining the atmospheric lifetime of fluorocarbons. J. Geophys. Res. 83: 5493-5500. Dayan, U. and Koch, J. (1996). Ozone Concentration Profiles in the Los Angeles Basin- A possible Similarity in the Build-Up Mechanism of Inland Surface Ozone in Israel. J. Appl. Meteor. 35: 1085-1090. De Leeuw, F.A.A.M. (2000). Trends in ground level ozone concentrations in the European Union. Environ. Sci. Policy. 3: 189-199. De Leeuw, F.A.A.M. (2002). A set of emission indicators for long-range transboundary air pollution. Environ. Sci. Policy. 5: 135-145. Debaje, S.B. and Kakade, A.D. (2006). Weekend Ozone Effect over Rural and Urban Site in India. Aerosol Air Qual. Res. 6: 322-333. Denmead, O.T. (1991). Sources and sinks of greenhouse gases in the soil-plant environment. Plant ecology. 91: 73-86. Denmead, O.T. (1995). Novel Meteorological Methods for Measuring Trace Gas Fluxes Philosophical Transactions of the Royal Society: Physical and Engineering Sciences. 351: 383-396. Dentener, F.J. and Crutzen, P.J. (1993). Reaction of N2O5 on Tropospheric Aerosols: Impact on the Global Distributions of NOx, O3, and OH. J. Geophys. Res. 98: 7149-7163. Derwenta, R.G., Jenkin, M.E., Saunders, S.M., Pilling, M.J., Simmonds, P.G., Passant, N.R., Dollard, G.J., Dumitrean, P., Kentf, A. (2003). Photochemical ozone formation in north west Europe andits control. Atmos. Environ. 37: 1983-1991 Derwent, R.G., Carslaw, N., Simmonds, P.G., Bassford, M., O'Doherty, S., Ryall, D.B., Pilling, M.J., Lewis, A.C., Mcquaid, J.B. (1999). Hydroxyl radical concentrations estimated from measurements of trichloroethylene during the EASE/ACSOE campaign at Mace Head, Ireland during July 1996. J. Atmos. Chem. 34: 185-205. Derwent, R.G., Hopper, S. and Metcalfe, S.E. (1988). Computer Modeling Studies of the Origins of the Acidity Deposited in Scotland. Atomic Energy Research Establishment. Report no. 13328. Derwent, R.G., Jenkin, M.E., Passant, N.R., Pilling, M.J. (2007). Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmos. Environ. 41: 2570-2579. Devara, P.C.S., Saha, S.K., Ernest R.P., Sonbawne, S. M., Dani, K.K., Tiwari, Y.K. and Maheskumar, R.S. (2005). A Four-Year Climatology of Total Column Tropical Urban Aerosol, Ozone and Water Vapor Distributions over Pune, India. Aerosol Air Qual. Res. 5: 103-114. Dubey, N. and Pervez, S. (2008). Investigation of Variation in Ambient PM10 Levels within an Urban-industrial Environment. Aerosol Air Qual. Res. 8: 54-64. Edwards, G.C., Neumann, H.H., den Hartog, G., Thurtell, G.W., Kidd, G. (1994). Eddy correlation measurements of methane fluxes using a tunable diode laser at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES). J. Geophys. Res. 99(D1): 1511-1517. Ehhalt, D.H., Schmidt, U. (1978). Sources and sinks of atmospheric methane. Pure Appl. Geophys. 116: 452-464. Environmental Protection Administration, Taiwan (EPA/Taiwan) (2003). Air Quality Annual Report Taiwan Area in 2002. EPA Publication GPN 2008400070, Taiwan Environmental Protection Administration, Taipei, p. 218. Etiope G. and Klusman R.W. (2002). Geologic emissions of methane to the atmosphere, Chemosphere. 49: 777-789. Feichter, J., Kjelldtröm, E., Rodhe, H., Dentener, F., Lelieveld, J. and. Roelofs, G.J. (1996). Simulation of the tropospheric sulfur cycle in a global climate model. Atmos. Environ. 30: 1693-1707. Feliciano, M.S., Pio, C.A., Vermeulen, A.T. (2001). Evaluation of SO2 dry deposition over short vegetation in Portugal. Atmos. Environ. 35: 3633-3643. Fenske, J.D., Kuwata, K.T., Houk, K.N., Paulson, S.E. (2000). OH radical yields from the ozone reaction with cycloalkenes. J. Phys. 104: 7246-7254. Fishman, J., et.al. (1990). Global Alert: The ozone pollution crisis. Forberich, O., Pfeiffer, T., Spiekermann, M., Walter, J., Comes, F.J., Grigonis, R., Clemitshaw, K.C., Burgess, R.A. (1999). Measurement of the diurnal variation of the OH radical concentration and analysis of the data by modelling. J. Atmos. Chem. 33: 155-181. Fuhrer, J., Skärby, L., Ashmore, M.R. (1997). Critical levels for ozone effects on vegetation in Europe. Environmental Pollution. 97: 91-106. Galle, B., Klemedtsson, L., Griffith, D.W.T. (1994). Application of a Fourier transform IR system for measurements of N2O fluxes using micrometeorological methods, an ultralarge chamber system, and conventional field chambers. J. Geophys. Res. 99 (D8): 16575-16583. Garratt, J.R. (1992). The atmospheric boundary layer. Cambridge University Press, 316. Gash, J.H.C. (1986). A note on estimating the effect of limited fetch on micrometeorological evaporation measurements. Bound.-Lay. Meteorol. 35(4): 409-413. George, L.A., Hard, T.M., O'Brien, R.J. (1999). Measurement of free radicals OH and HO2 in Los Angeles smog. J. Geophys. Res. 104: 11643-11655. Gerosa, G. and Cieslik A.S. (2003). Ballarin-Denti, Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. Atmos. Environ. 37: 777-788. Geyer, A., Ackermann, R., Dubois, R., Lohrmann, B., Müller, T., Platt, U. (2001). Long-term Observation of Nitrate Radicals in the Continental Boundary Layer near Berlin. Atmos. Environ. 35: 3619-3631. Glenn, A.J., Flanagan, L.B., Syed, K.H., Carlson, P.J. (2006). Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 140: 115-135. Greenberg, J.P., Guenther, A., Zimmerman, P., Baugh, W., Geron, C., Davis, K., Helmig, D., Klinger, L.F. (1999). Tethered Balloon Measurements of Biogenic VOCs in the Atmospheric Boundary Layer. Atmos. Environ. 33: 855-867. Greenup, A.L., M.A. Bradford, N.P. McNamara, P. Ineson and J.A. Lee. (2000). The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant and Soil. 227: 265-272. Grelle, A. and Lindorth, A. (1996). Eddy-covariance system for long term monitoring of fluxes of heat, water vapor, and CO2. Glob. Change Biol. 2(3): 297-307. Grimmond, C.S.B. and Oke, T.R. (2002). Turbulent heat fluxes in urban area: Observation and a local-scale urban meteorological parameterization scheme (LUMPS). J. Appl. Meteorol. 41(7): 792-810. Grulke, N.E., Paoletti, E., Heath, R.L. (2007). Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ. Pollution. 146: 640-647. Güsten, H., Heinrich, G., Sprung, D. (1998). Nocturnal Depletion of Ozone in the Upper Rhine Valley. Atmos. Environ. 32: 1195-1202. Güsten, H., Heinrich, G., Mönnich, E., Weppner, J., Cvitaš, T., Klasinc, L., Varotsos, C.A. and Asimakopoulos, D.N. (1997). Thessaloniki '91 Field Measurement Campaign-II. Ozone Formation in the Greater Thessaloniki Area. Atmos. Environ. 31: 1115-1226. Harazono, Y., Monji, N., Miyata, A., Kita, K., Hamotani, K., Uchida, Y., Yoshimoto, M., Sano, T., Fujiwara, M., Isobe, S., Ogawa, T. (1996). Development of measurement methods for trace gas fluxes in the surface boundary layer and a basic examination of the flux evaluation. Bull. Natl. Inst. Agro-Environ. Sci., Tsukuba, Japan.13: 166-226. Hayden, K.L., Anlauf, K.G., Hoff, R.M., Strapp, J.W., Bottenheim, J.W., Wiebe, H.A., Froude, F.A., Martin, J.B., Steyn, D.G., McKendry, I.G. (1997). The Vertical Chemical and Meteorological Structure of the Boundary Layer in the Lower Fraser Valley during PACIFIC '93. Atmos. Environ. 31: 2089-2105. Hedley, M. and Singleton, D.L. (1997). Evaluation of an Air Quality Simulation of the Lower Fraser Valley-I. Meteorology. Atmos. Environ. 31: 1605-1615. Heilman, J.L., Brittin, C.L., Neale, C.M.U. (1989). Fetch requirements for Bowen-ratio measurements of latent and sensible heat fluxes. Agric. Forest Meteorol. 44: 261-273. Helmis, C.G., Tombrou, M., Asimakopoulos, D.N., Soilemes, A., Güsten, H., Moussiopoulos, N., Hatzaridou, A. (1997). Thessaloniki '91 Field Measurement Campaign-I. Wind Field and Atmospheric Boundary Layer Structure over Greater Thessaloniki Area, under Light Background Flow. Atmos. Environ. 31: 1101-1114. Hertel, O., Christensen, J., Runge, E. H., Asman, W. A. H., Berkowicz, R., Hovmand M. F., Hov, Ø. (1995). Development and Testing of a New Variable Scale Air Pollution Model-ACDEP. Atmos. Environ. 29: 1267-1290. Heusinkveld, B.G., Jacobs, A.F.G., Holtslag, A.A.M., Berkowicz, S.M. (2004). Surface energy balance in an arid region: role of soil heat flux. Agric. For. Meteorol. 122: 21-37. Hoff, R.M., Mickle, R.E., Fung, C. (1995). Vertical Profiles of Ozone during the EMEFS I Experiment in Southern Ontario. Atmos. Environ. 29: 1735-1747. Holzapfel-Psehorn, A. and Seiler, W. (1986). Methane emissions during a cultivation period from an Italian rice paddy. J. Geophys. Res. 91: 11803-11814. Holzworth, G.C. (1972). Mixing heights, wind speeds, and potential for urban air pollution throughout the contiguous United States. AP-101, U.S. EPA, Raleigh, NC. Horst, T.W. (1999). The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques. Bound.-Lay. Meteorol. 90(2): 171-188. Hsia, Y.J., Hsieh, C.I., Chang, S.C., Lin, P.J., Lai, C.W. (2005). Establishment of A Tower Flux Measurement Site and Its Future Direction. Taiwan Environmental Protection Administration, EPA-94-L105-02-201, Taipei, Taiwan. (in Chinese) Hsieh, L.Y., Chen, C.L., Wan, M.W., Tsai, C.H., Tsai, Y.I. (2008). Speciation and Temporal Characterization of Dicarboxylic Acids in PM2.5 during a PM Episode and a Period of Non-Episodic Pollution. Atmos. Environ. 42: 6836-6850. Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I. (2009). Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmos. Environ., doi:10.1016/j.atmosenv.2009.04.034. Huebert, B.J. and Robert, C.H. (1985). The Dry Deposition of Nitric Acid to Grass. J. Geophys. Res. 90: 2085-2090. Hung, I.F., Deshpande, C.G., Tsai C.J., Huang, S.H. (2005). Spatial and Temporal Distribution of Volatile Organic Compounds Around an Industrial Park of Taiwan. Aerosol Air Qual. Res. 5: 141-153. Husted, S. (1993). An open chamber technique for determination of methane emission from stored livestock manure. Atmos. Environ. 27: 1635-1642. Hutchinson, G.L., and Mosier, A.R. (1981). Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45: 311-316. IPCC, (1996). Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. IPCC, (2007). Climate Change - synthesis report. An Assessment of the Intergovernmental Panel on Climate Change. Plenary XXVII (Valencia, Spain, 12-17 November), 52 pp. Jenkin, M.E. and Clemitshaw, K.C. (2000). Ozone and other Secondary Photochemical Pollutants: Chemical Processes Governing Their Formation in the Planetary Boundary Layer. Atmos. Environ. 34: 2499-2527. Jepma, C.J. and Munasinghe, M. (1998), “Climate change policy”, New York: Cambridge University Press. pp. 331. Jitto, P., Vinitnantarat, S., Khummongkol, P. (2007). Dry deposition velocity of sulfur dioxide over rice paddy in the tropical region. Atmos. Res. 85: 140-147. Jonson, J., Simpson, D., Fagerli, H., Solberg, S. (2006). Can we explain the trends in European ozone levels? Atmos. Chem. Phys. 6: 51-66. Judith, P., Pawson, S., Ryan, L., Fogt, J., Nielsen, E., Neff, W.D. (2008). Impact of stratospheric ozone hole recovery on Antarctic climate, Geophys Res Lett. 35: L08714, doi:10.1029/2008GL033317. Kadowaki, S. (1986). On the Nature of Atmospheric Oxidation Processes of SO2 to Sulfate and of NO2 to Nitrate on the Basis of Diurnal Variations of Sulfate, Nitrate, and other Pollution in an Urban Area. Environ. Sci. Technol. 20: 1249-1253. Kaimal, J.C. and Finnigan, J.J. (1994). Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York. Kassomenos, P., Skouloudis, A.N., Lykoudis, S., Flocas, H.A. (1999). Air-quality indicators for uniform indexing of atmospheric pollution over large metropolitan areas. Atmos. Environ. 33: 1861-1879. Khalil, M.A.K., Shearer, M.J., Rasmussen, R.A., Changlin, D and Ren L. (2008). Production, oxidation, and emissions of methane from rice fields in China. J. Geophys. Res. 113: G00A04, doi:10.1029/2007JG000461. Khoder, M.I. (2002). Atmospheric Conversion of Sulfur Dioxide to Particulate Sulfate and Nitrogen Dioxide to Particulate Nitrate and Gaseous Nitric Acid in an Urban Area. Chemosphere. 49: 675- 684. Kim, J., Verma, S.B., Billesbach, D.P. (1999). Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biol. 5: 433-440. Kim, J., Verma, S.B., Billesbach, D.P., Clement, R.J. (1998). Diel variation in methane emission from a midlatitude prairie wetland: significance of convective throughflow in Phragmites australis. J. Geophys. Res. 103: 28029-28039. Kimura, M., Minoda, T., Murase, J. (1993). Water-soluble organic materials in paddy soil ecosystem. II. Effects of temperature on controls of total organic materials, organic acids, and methane in leachate from submerged paddy soils amended with rice straw. Soil Sci. Plant Nut. 39: 713-724. Kobara H., Takeuchi, K., Ibusuki, T. (2007). Effect of Relative Humidity on Aerosol Generation through Experiments at Low Concentrations of Gaseous Nitric Acid and Ammonia. Aerosol Air Qual. Res. 7: 193-204. Kleinman, L.I. (2000). Ozone process insights from field experiments part II: Observation-based analysis for ozone production. Atmos. Environ. 34: 2023-2033. Kovacs, T.A., Brune, W.H., Harder, H., Martinez, M., Simpas, J.B., Frost, G.J., Williams, E., Jobson, T., Stroud, C., Young, V., Fried, A., Wert, B. (2003). Direct measurements of urban OH reactivity during Nashville SOS in summer 1999. J. Environ. Monit. 5: 68-74. Kramp, F. and Volz-Thomas, A. (1997). On the budget of OH radicals and ozone in an urban plume from the decay of C_5-C_8 hydrocarbons and NOx. J. Atmos. Chem. 28: 263-282. Kumar, U., Prakash, A., Jain, V.K. (2008). A Photochemical Modeling Approach to Investigate O3 Sensitivity to NOx and VOCs in the Urban Atmosphere of Delhi. Aerosol Air Qual. Res. 8: 147-159. Kuo, Y.M., Hung, H.F., Yang, T.T. (2007). Chemical Compositions of PM2.5 in Residential Homes of Southern Taiwan. Aerosol Air Qual. Res. 7: 403-416. Kurpius, M.R., McKay, M., Goldstein, A.H. (2002). Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmos. Environ. 36: 4503-4515. Laine, A., Wilson, D., Kiely, G., Byrne, K.A. (2007). Methane flux dynamics in an Irish lowland blanket bog. Plant Soil. 299: 181-193. Lapitan, R.L., Wanninkhof, R., Mosier, A.R. (1999). Methods for stable gas flux determination in aquatic and terrestrial systems. In A.F. Bouwman (ed.) Approaches to Scaling of Trace Gas Fluxes in Ecosystems. Developments in Atmospheric Science 24. Elsevier, Amsterdam. pp. 27-66. Last, J.M. (1993). Global change: ozone depletion, greenhouse warming, and public health. Annu. Rev. Public Health. 14: 115-136. Lee, C.F. and Lin S.J. (2001). Structure decomposition of CO2 emissions from Taiwan's petrochemical industries. Energy Policy. 29: 237-244. Leeuw, F.D., Sluyter, R., Breugel, P.V., Bogman, F. (2000). Air pollution by ozone in Europe in 1999 and summer 2000. European Environment Agency, European Topic Centre on Air Quality. Lehning, M., Richner, H., Kok, G.L., Neininger, B. (1998). Vertical Exchange and Regional Budgets of Air Pollutants over Densely Populated Areas. Atmos. Environ. 32: 1353-1363. Lin, C.H. (2008). Impact of Downward Mixing Ozone Initially Existing in the Daily Atmosphere on Surface Ozone Accumulation in Southern Taiwan. J. Air Waste Manage. Assoc. 58: 562-579. Lin, C.H., Lai, C.H., Wu, Y.L., Lai, H.C., Lin, P. H. (2007). Vertical Ozone Distributions Observed Using Tethered Ozonesondes in a Coastal Industrial City, Kaohsiung, in Southern Taiwan. Environ. Monit. Assess. 127: 253-270. Lin, C.H., Wu, Y.l., Lai, C.H., Lin, P.H., Lai, H.C., Lin, P.L. (2004). Experimental Investigation of Ozone Accumulation Overnight during a Wintertime Ozone Episode in South Taiwan. Atmos. Environ. 38: 4267-4278. Lin, C.H., Wu, Y.L., Lai, C.H., Watson, J.G., Chow, J.C. (2008). Air Quality Measurements from the Southern Particulate Matter Supersite in Taiwan. Aerosol Air Qual. Res. 8: 233-264. Lin, Y.C., Cheng, M.T., Ting, W.Y., Yeh, C.R. (2006). Characteristics of Gaseous HONO, HNO3, NH3 and Particulate Ammonium Nitrate in an Urban City of Central Taiwan. Atmos. Environ. 40: 4725-4733. Logan, J. A. (1989). Ozone in Rural Areas of the United States. J. Geophys. Res. 94: 8511-8532. Ludwig, F.L., Jiang, J.Y., Chen, J. (1995). Classification of Ozone and Weather Patterns Associated with High Ozone Concentrations in the San Francisco and Monterey Bay Areas. Atmos. Environ. 29: 2915-2928. MacKenzie, A.R., Harrison, R.M., Colbeck, I., Clark, P.A. and Varey, R.H. (1995). The Ozone Increments in Urban Plumes. Sci. Total Environ. 159: 91-99. Martinez, M., Harder, H., Kovacs, T.A., Simpas, J.B., Bassis, J., Lesher, R., Brune, W.H., Frost, G.J., Williams, E.J., Stroud, C.A., Jobson, B.T., Roberts, J.M., Hall, S.R., Shetter, R.E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V.L., White, A.B., Zamora, R.J. (2003). OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999. J. Geophys. Res. 108, D19, 4617, doi:10.1029/2003JD003551. Martins, L.D. and Andrade, M.D.F. (2008). Ozone formation potentials of volatile organic compounds and ozone sensitivity to their emission in the megacity of São Paulo, Brazil. Water Air Soil Pollut. 195: 201-213. Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., Ohizumi, T. (2006). Deposition velocity of O3 and SO2 in the dry and wet season above a tropical forest in northern Thailand. Atmos. Environ. 40: 7557-7564. Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., Khummongkol, P., Wangwongwatana, S., Totsuka, T. (2005). Ozone dry deposition above a tropical forest in the dry season in northern Thailand. Atmos. Enviro. 39: 2571-2577. Matsumoto, J., Imai, H., Kosugi, N., Kajii, Y. (2005). In Situ Measurement of N2O5 in the Urban Atmosphere by thermal Decomposition/laser-induced Fluorescence Technique. Atmos. Environ. 39: 6802-6811. Matsumoto, K. and Tanaka, H. (1996). Formation and Dissociation of Atmospheric Particulate Nitrate and Chloride: an Approach Based on Phase Equilibrium. Atmos. Environ. 30: 639-648. Matsumoto, M. and Okita, T. (1998). Long Term Measurements of Atmospheric Gaseous Aerosol Species Using an Annular Denuder System in Nara, Japan. Atmos. Environ. 32: 1419-1425. McElroy, J.L. and Smith, T.B. (1986). Vertical Pollutant Distributions and Boundary Later Structure Observed by Airborne Lidar near the Complex Southern California Coastline. Atmos. Environ. 20: 1555-1566. McKendry, I.G., Steyn, D.G., Lundgren, J., Hoff, R.M., Strapp, W., Anlauf, K., Froude, F., Martin, J.B., Banta, R.M. and Olivier, L.D. (1997). Elevated Ozone Layers and Vertical Down-Mixing over the Lower Fraser Valley, BC. Atmos. Environ. 31: 2135-2146. McMillen, R.T. (1988). An eddy-correlation technique with extended applicability to non-simple terrain. Bound.-Lay. Meteorol. 43(3): 231-245. Meyers, T.P. and Hollinger, S.E. (2004). An assessment of storage terms in the surface energy balance of maize and soybean, Agric. For. Meteorol. 125(1-2): 105-115. Meyers, T.P., Hall, M.E., Lindberg, S.E., Kim, K. (1996). Use of the modified Bowen-ratio technique to measure fluxes of trace gases. Atmos. Environ. 30: 3321-3329. Minami, K., Neue, H.U. (1994). Rice paddies as a methane source. Climate Change. 27: 13-26. Miyata, A., Leuning, R., Thomas, O., Denmead, Kim, J., Harazono, Y. (2000). Carbon dioxide and methane fluxes from an intermittently flooded paddy field, Agricultural and Forest Meteorology. 102: 287-303,. Mointeith, J.L. and Unsworth, M. (1990). Environmental physics, 2nd ed. butterworth-heinemann, Oxford, 51-385. Moore, T.R. and Dalva, M. (1993). The influence of temperature and water table position on carbon dioxide and methane emission from laboratory columns of peatland soils. J. Soil Sci. 44: 651-664. Neter, J., Wassermann, W., Kutner, M.H. (2004). Applied Linear Regression Models (4th ed.), McGraw-Hill/Irwin, New York. Neu, U., Kunzle, T., Wanner, H. (1994). On the Relation between Ozone Storage in the Residual Layer and Daily Variation in Near-Surface Ozone Concentration - A Case Study. Boundary Layer Meteorol. 69: 221-247. Neue, H.U. (1993). Methane emission from rice fields. Bioscience. 43: 466-475 Neue, H.U., Bicker-Heidmann, P., Scharpenseel, H.W. (1990). Organic matter dynamics, soil properties and cultural practices in dee paddies and their relationships to methane production, in A.F. Bouwman (ed), Soils and the Greenhouse Effect. pp. 457-466 (JohnWiley & Sons, New York). Nouchi, I., Hosono, T., Aoki, K., Minami, K. (1994). Seasonal variation in methane flux from rice paddies associated with methane concentration in soil water, biomass and temperature, and its modeling. Plant and Soil 161: 195-208. Res. 99: 1511-1517. Oke, T.R., (1987). Boundary Layer Climates. 2nd ed. Methuen: London and New York, pp 435. Oltmans, S. J., Lefohn A. S., Scheel H.E., Harris J. M., Levy H. II, Galbally I. E., Brunke E.G., Meyer C.P., Lathrop J.A., Johnson B.J., Shadwick D.S., Cuevas E., Schmidlin F. J., Tarasick D. W., Claude H., Kerr J. B., Uchino O., Mohnen V. (1998). Trends of ozone in the troposphere. Geophys. Res. Lett., 25, 139-142. Padro, J., Hartog, G.D., Neumann, H.H. (1991). An Investigation OH the ADOM Dry Deposition Module Using Summertime O3 Measurements above a Deciduous Forest. Atmo. Environ. 25: 1689-1704. Parlange, M.B., Katul, G.G. (1995). Watershed scale shear stress from tethersonde wind profile measurements under near neutral and unstable atmospheric stability. Water Resources Research. 31(4): 961-968 Paulson, S.E., Chung, M.Y., Hasson, A.S. (1999). OH Radical Formation from the Gas-Phase Reaction of Ozone with Terminal Alkenes and the Relationship between Structure and Mechanism. J. Phys. Chem. A, 103: 8125-8138. Perner, D., Platt, U., Trainer, M., Hobler, G., Drummond, J., Junkermann, W., Rudolph, J., Schubert, B., Volz, A., Ehhalt, D.H. (1987). Measurements of Tropospheric OH Concentrations: A Comparison of Field Data with Model Predictions. J. Atmos. Chem., 5: 185-216. Pilinis, C., Seinfeld, J.H., Seigneur, C. (1987). Mathematical Modeling of the Dynamics of Multicomponent Atmospheric Aerosols. Atmos. Environ. 21: 943-955. Pisano, J.T., McKendry, I., Steyn, D.G. and Hastie, D.R. (1997). Vertical Nitrogen Dioxide and Ozone Concentrations Measured from a Tethered Balloon in the Lower Fraser Valley. Atmos. Environ. 31: 2071-2078. Prospero, J.M., Schmitt, R., Cuevas, E., Savoie, D.L., Graustein, W.C., Turekian, K.K., Volz-Thomas, A., Diaz, A., Oltmans, S.J., Levy II, H. (1995). Temporal variability of summer-time ozone and aerosols in the free troposphere over the eastern North Atlantic. Geophysical research letter 22: 2925-2928 Rastogi, N. and Sarin, M. (2006). Atmospheric Abundances of Nitrogen Species Inrain and Aerosols over a Semi-arid Region: Sources and Deposition Fluxes. Aerosol Air Qual. Res. 6: 406-417. Reddy, R.R., Rama, Gopal K., Narasimhulu, K., Siva Sankara Reddy, L. and Raghavendra Kumar, K. (2007). Aerosol Size Distribution Variation in Anantapur (14.62oN, 77.65oE) Semi arid Zone and Its Impact on Aerosol Effective Radius. Aerosol Air Qual. Res. 7: 550-562. Ren, X., Brune, W.H., Mao, J., Mitchell, M.J., Lesher, R.L., Simpas, J.B., Metcalf, A.R., Schwab, J.J., Cai, C., Li, Y., Demerjian, K.L., Felton, H.D., Boynton, G., Adams, A., Perryc, J., He, Y., Zhoud, X., Hou, J. (2006). Behavior of OH and HO2 in the winter atmosphere in New York City. Atmos. Environ., 40: S252-S263. Ren, X., Harder, H., Martinez, M., Lesher, R.L., Oliger, A., Simpas, J.B., Brune, W.H., Schwab, J.J., Demerjian, K.L., He, Y., Zhou, X., Gao, H. (2003). OH and HO2 Chemistry in the urban atmosphere of New York City. Atmos. Environ., 37: 3639-3651. Ren, X., Olson, J.R., Crawford, J.H., Brune, W.H., Mao, J., Long, R.B., Chen, Z., Chen, G., Avery, M.A., Sachse, G.W., Barr
摘要: 
自工業革命後,隨著經濟的蓬勃發展,大量的空氣污染物也隨之產生,除了原生性的空氣污染物外,經由氣團傳輸及光化學反應的產生,常造成下風地區臭氧等光化學煙霧的產生。根據統計資料顯示,臭氧前趨物及各空氣品質的指標污染物的年均值均呈現逐年下降的趨勢,唯獨臭氧的濃度卻有逐漸升高的趨勢。南投縣是以農林產業為主,縣內並無重大的工廠污染排放源,但其發生臭氧事件的比例卻逐年上升。因此,南投地區高臭氧濃度的成因值得深入探討。再者,污染物的傳輸除了水平的移動外,藉由大氣的擴散及對流等機制,導致污染物的影響不再侷限於地表,故應對垂直剖面的分佈進行討論。本研究利用繫留探空氣球觀測中部地區臭氧及其前趨物的垂直剖面,進而探討中部地區高臭氧的成因。
觀測結果顯示在臭氧的垂直剖面上,臭氧濃度最大值並非發生於的地表,而是在距地高約100~600公尺的高空處。在臭氧事件日期間,除低風速及低混合層高之氣象條件外,其山谷風、海陸風機制及夜間儲留機制皆較為明顯。再者,發生臭氧事件日之前夜,在夜間邊界層之上的臭氧濃度均較高,隨後因日出溫度提升而將夜間邊界層破壞後,儲留的臭氧濃度向下混合導致地面臭氧濃度隨之抬升。利用垂直剖面的濃度梯度估算各污染物通量,發現臭氧的通量均為由上而下沉降,在中午時達到最大量,且在同時地表的臭氧也達最高濃度。
根據逆軌跡的分析,造成南投地區高臭氧濃度的貢獻源多來自於沿海的工業區,且其受污染氣團的傳輸距離較長且速度緩慢。再者,由VOC的光化指標及PM的轉化率皆顯示在高污染地區的氣團都屬於較老化。此現象表示當氣團若行經沿海地區的污染源,原生性污染物會隨著氣團傳輸且進行化學反應,並隨著傳輸距離及時間的增加造成下風地區臭氧等二次污染物的濃度上升。再者,高濃度的臭氧常伴隨著高濃度的二氧化氮及二氧化硫,由排放量資料、逆軌跡分析及統計模式的驗證,可得台灣中部沿海地區的點排放源是影響夏季臭氧事件日的重要關鍵。上述所觀測的機制,透過主成份分析及線性回歸分析,皆證實有明顯相關性,且由歷年環保署的觀測資料也驗證相同的趨勢。
在大氣擴散及氣候變遷的角度上,瞭解污染物及能量的收支與分佈是重要的工作,而大氣邊界層內地表與大氣間純量的交換率可以用通量的慨念來描述。近年來投入地表通量觀測的研究快速成長,不同的通量估算方法陸續被發展出來,而渦流相關法被視為最準確的通量量測方法。本研究整合各分析儀的運作並克服人工操作的繁瑣,研發出一套自動化的空氣污染物通量觀測系統,搭配渦流協變性系統於都市、農業及森林三種不同土地形態處進行通量的觀測,皆已穩定持續運作並加入國際通量觀測網(Fluxnet)。
本研究利用渦流相關法及垂直梯度法方法推估各污染物於大氣中的通量,以溫室氣體(二氧化碳及甲烷)為例,討論都市及水稻田中溫室氣體通量的變化情形。結果顯示在都市的二氧化碳通量明顯受到交通量的影響。在水稻田的二氧化碳濃度在中午為最低值且其通量也達到最大的向下通量,此現象表示二氧化碳濃度及通量受到植物的呼吸作用及光合作用所主導。再者,水稻田為甲烷的排放源之一,故水稻田的甲烷通量皆呈現向上排放的現象,且在中午達到最大值。本研究中水稻田的總GWP值為1.16 µmol CO2 m-2 s-1,其中甲烷的貢獻為39%,而61%為二氧化碳所貢獻。

Although pollutant sources are usually in urban and industrialized areas, poor air quality is frequently encountered in downwind rural areas. This study measured vertical distribution of airborne pollutants and the state of meteorological variables within the Planetary Boundary Layer (PBL) below 1200 m using a tethered balloon sounding system at a downwind rural site in the Taichung Basin, Taiwan, during the 2002 summer. Furthermore, an annular denuder system (ADS) was used to measure PM2.5 and gaseous pollutant concentrations. Concentrations of 55 VOCs species were measured continuously by a network of photochemical assessment monitoring stations in central Taiwan. Both the vertical gradient method and Bowen ratio methods were used to compute the pollutant's flux and dry deposition velocity. Moreover, the backward trajectory, ratio of particulate matter and photochemical index were used to discuss the correlation between the ozone concentration and the aging degree of air masses.
The observed vertical distributions of these pollutants indicate that the concentrations of carbon monoxide, nitrogen monoxide and biogenic volatile organic compounds decreased as the height increased. Conversely, the highest ozone concentrations were measured during early afternoon at heights of 100-600 m above ground level. Moreover, it is found that part of the early-afternoon surface ozone was from ozone stored aloft in the residue layer at heights above the nocturnal boundary layer of the preceding night. The flux of ozone revealed the phenomenon of passing downward from the high altitude to the ground and peaked around noon (09-15 LT).
During ozone episodes, both nocturnal inversion and valley-mountain wind circulation were stronger than those during non-episode days. The backward trajectory distribution had a clear sea-land breeze mechanism with a relatively slow wind speed, and the air mass primarily entered through the western coastal industrial area during ozone episodes. Moreover, high concentrations of ozone profiles were normally accompanied by relatively higher concentrations of nitrogen dioxide and sulfur dioxide. From emission inventory, trajectory analysis and statistical analysis, all suggest that high-stack point sources have an important role in causing the summer ozone episodes. This suggestion is supported by 11-y summer data at three adjacent air-quality monitoring stations in the Nanton.
The pollutant's dry deposition velocity was also estimated by the Bowen Ratio method (BR) and the vertical gradient method (VG). The results indicated that the aerodynamic conductance is an important parameter for the VG and BR methods. The average dry deposition velocities of NO2 and SO2 were about 0.85 and 0.50 cm s-1 respectively on rice paddy in central Taiwan. These values were similar to those of prior researches.
Analytical results demonstrate that daytime ozone concentrations accompany HNO3 concentrations by photochemical reactions and depend on the previous night's HNO2 concentration. The sulfur and nitrogen conversion ratios, and the photochemical indices (ethylbenzene/m, p-xylene, n-pentane/t-2-pentene and NO2/NO) increased as the ozone concentration. The downwind photochemical indices were strongly correlated with ozone concentration and were higher than those upwind. These phenomena indicate that the air mass during ozone episodes belongs to the “more aged” category.
This study presents our effort to build a flux tower in an urban area in Taiwan. Preliminary results on carbon dioxide emission are reported. The results can be related to the emission from automobiles and the photosynthetic absorption to vegetation, indicating a promising technique. The maximum carbon dioxide concentration and the maximum flux for wind coming from the east, where a road of the heaviest traffic volume in the fingerprint area of the tower was located, was 409 ppmv and 0.21 mg m-2 s-1, respectively. The concentration was higher than that from the west wind direction by 20 ppmv, and the flux was higher by 0.14 mg m-2 s-1. A comparison between a conventional flux chamber (FC) manner and the newly developed EC system is conducted.
Field campaign was undertaken over rice paddy in Central Taiwan to investigate the flux of methane through flux-gradient method. The average observed concentration of methane during the campaign periods at the lower height (22.2 m agl) and upper height (27.5 m) were around 2.04 ppm and 2.01 ppm, respectively. It is noticed that the profile concentration of methane was lower during day time when compared to night time. But, the flux of methane was higher during day time than the observed values during night hours. In order to understand the relationship between the influences of meteorological variable over the flux of methane, six metrological variables are studied. It is observed that soil heat flux has a linear positive correlation over the flux of methane. Over a 20-year time frame, the GWP (Global warming potential) flux of methane and CO2 observed at this study site for methane and CO2 were 0.45 and 0.71 μmol CO2 m-2 s-1 upward, respectively. The total GWP flux (CH4 and CO2) is 1.16 μmol CO2 m-2 s-1. Thus methane and CO2 contributes 39 % and 61 %, respectively.
URI: http://hdl.handle.net/11455/5590
其他識別: U0005-0308200914035600
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.