Please use this identifier to cite or link to this item:
標題: 乾式吸附劑吸附二氧化碳之動力學研究
Kinetic Study of CO2 Adsorption via Dry Sorbents
作者: 陳明志
Chen, Ming-Jhih
關鍵字: dry sorbent;乾式吸附劑;carbon dioxide;adsorption model;kinetics;二氧化碳;吸附模式;動力學
出版社: 環境工程學系所
引用: Agnihotri, S., Rood, M.J., Rostam-Abadi, M., 2005. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon 43, 2379-2388. Chuang, C.L., Chiang, P.C., Chang, E.E., 2003. Modeling VOCs adsorption onto activated carbon. Chemosphere 53, 17-27. Clark, M.M., 1996. Transport modeling for environmental engineering and scientists, John Wiley & Sons, Inc., New York, U.S.A. Demirbas, E., Dizge, N., Sulak, M.T., Kobya, M., 2009. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chemical Engineering Journal 148, 480-487. Dwivedi, P., Gaur, V., Sharma, A., Verma, N., 2004. Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Separation and purification technology 39, 23-37. IMSL (International Mathematical and Statistical Library INC.) 1987. Contents Document, Vol. 2, Version 1.0, Houston, TX. Joly, A., Perrard, A., 2009. Linear driving force models for dynamic adsorption of volatile organic compound traces by porous adsorbent beds. Mathematics and Computers in Simulation 79, 3492-3499. Kaplan, D., Nir, I., Shmueli, L., 2006. Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon. Carbon 44, 3247-3254. Kim, Y.A., Hayashi, T., Endo, M., Kaburagi, Y., Tsukada, T., Shan, J., Osato, K., Tsuruoka, S., 2005. Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method. Carbon 43, 2243-2250. Lax, D., 1954. Weak solutions of nonlinear hyperbolic equations and their numerical computations. Communications on Pure and Applied Mathematics 7, 159-193. Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J., Femat-Flores, R.A., 2007. Kinetic modeling of pentachlorophenol adsorption from aqueous solution on activated carbon fibers. Carbon 45, 2280-2289. Lu, C., Su, F., Hsu, S., Chen, W., Bai, H., Hwang, J.F., Lee, H.H., 2009. Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles. Fuel Processing Technology 90, 1543-1549. Puerta, A., Vidal-Madjar, C., Jaulmes, A., Diez-Masa, J., Frutos, M.d., 2006. Frontal analysis for characterizing the adsorption–desorption behavior of β-lactoglobulin on immunoadsorbents. Journal of Chromatography A 1119, 34-42. Ruthven, D. M., 1984. Principles of adsorption and adsorption process. John Wiley & Sons, Inc., New Jersey, U.S.A. Su, F., Lu, C., Chen, W., Bai, H., Hwang, J.F, 2009. Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the Total Environment 407, 3017-3023. Szekely, J., Evans, J.W., Sohn, H.Y., 1976. Gas-Solid Reaction; Academic Press: New York. Xu, X., Song C., Andresen, J. M., Miller, B. G., Scaroni, A. W., 2003. Preparation and characterization of novel CO2 “molecular basket’’ adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous and Mesoporous Materials 62, 29-45. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R. B, Bland, A. E, Wright, I., 2008. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences 20, 14-27. 李孟珊,(2006),多壁奈米碳管應用於苯廢氣處理之特性研究,碩士論文,國立中興大學環境工程系。 許世杰,(2009),奈米碳管吸附氣相異丙醇之研究,博士論文,國立中興大學環境工程系。 陳威錦,(2004),熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究,碩士論文,國立中山大學環境工程研究所 。 陳文發,(2008),改質奈米碳管及中孔洞矽材吸附二氧化碳之研究,碩士論文,國立中興大學環境工程系。 吳佳樺, (2008) ”奈米及中孔氧化矽材料之合成、修飾、鑑定及其二氧化碳分離之應用” 碩士論文,中國文化大學材料科學與奈米科技研究所。 袁中新、洪崇軒,(2002) ”溫室氣體二氧化碳之常溫光催化還原技術研究”,行政院環境保護署
各吸附劑的吸附速率常數與脫附速率常數之結果為皆隨著溫度增加而增加。CNTs與CNT(APTS)之吸附熱結果顯示其為放熱反應與物理作用力之吸附反應。MSP與MSP(EDA) 之吸附熱結果顯示在20-60℃時,吸附速率常數對溫度較為敏感,為吸熱反應;在60-150℃時,脫附速率常數對溫度較為敏感,為放熱反應。Y60與Y60(EDA) 之吸附熱結果顯示在20-80℃時,吸附速率常數對溫度較為敏感,為吸熱反應;在80-120℃時,脫附速率常數對溫度較為敏感,為放熱反應。由吸附熱結果顯示吸附現象仍以物理吸附為主。

This study presents an approach to study kinetics of CO2 adsorption on low-temperature dry sorbents. A numerical model that considers mass transfer of CO2 in the gas phase and simultaneous adsorption and desorption of CO2 in the solid phase was developed to predict system performance of a fixed-bed CO2 adsorber packed with CNTs, CNT(APTS), MSP, MSP(EDA), Y60, and Y60(EDA). The model provide reaction rate constants of adsorption and desorption, which were employed to obtain activation energies and heat of adsorption.
The results of model showed that the present model could well describe measured breakthrough curves of CO2 adsorption under different influent CO2 concentrations and temperatures.
All sorbents show the rate constant of adsorption and desorption that are increased with temperature. The heat of adsorption for CNTs and CNT(APTS) reflected that an exothermic nature. MSP and MSP(EDA) at 20-60℃ reflected endothermic nature. Y60 and Y60(EDA) at 20-80℃ reflected endothermic nature. MSP, MSP(EDA), Y60, and Y60(EDA) reflected exothermic nature at other temperature. The adsorption process for all sorbents are physical sorption that is main principle.
Because there are amine groups on modified-sorbents that can increase interaction with CO2, the activation energy and adsorption heat of modified-sorbents is greater than raw sorbents .
The key model parameters of CO2 adsorption on sorbents that are CNT(APTS), MSP(EDA), and Y60(EDA) were evaluated in a sensitivity analysis to see their respective effects. A decrease in gas flow rate (Q) as well as an increase in maximum adsorption capacity (qm) and equilibrium adsorption constant (b) remarkably caused a rise in breakthrough time and thus resulted in a high adsorption capacity of CO2. The result show equilibrium adsorption constant is most effect for modeling.
其他識別: U0005-0702201014313700
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.