Please use this identifier to cite or link to this item:
標題: 過硫酸鹽處理氣相及水溶相單環芳香烴污染物
Treatment of monocyclic aromatic hydrocarbons in gaseous and aqueous phases with persulfate
作者: 陳堰均
Chen, Yan-Jyun
關鍵字: gasoline contamination;汽油污染物;sulfate radical;soil vapor extraction;gas absorption;remediation;permeable reactive barrier;in situ chemical oxidation;pyrite;groundwater remediation;硫酸根自由基;土壤蒸汽萃取法;氣體吸收;透水性反應牆;現址化學氧化法;黃鐵礦;土壤及地下水整治
出版社: 環境工程學系所
引用: References 1. ATSDR, Toxicological profile for gasoline. Agency for Toxic Substances and Disease Registry (ATSDR),, 1995. 2. ATSDR, 2007 CERCLA priority list of hazardous substances that will be the subject of toxicological profiles and support document. Agency for Toxic Substances and Disease Registry (ATSDR),, 2007. 3. ATSDR, Toxicological profile for total petroleum hydrocarbons (TPHs). Agency for Toxic Substances and Disease Registry (ATSDR),, 1999a. 4. ATSDR, Interaction profile for benzene, toluene, ethylbenzene and xylenes (BTEX). Agency for Toxic Substances and Disease Registry (ATSDR),, 2001. 5. 行政院環境保護署, 固定污染源空氣污染物排放標準, 中華民國96年9月11日修正發佈. 6. 行政院環境保護署, 固定污染源空氣污染防制費收費費率, 中華民國97年8月5日修正發佈. 7. Newell, Charles J., Acree, Steven D., Ross, Randall R., Huling, Scott G., U.S. EPA. Ground water Issue: Light Nonaqueous Phase Liquids. EPA/540/S-95/500, 1995. 8. 行政院環境保護署, 地下水污染管制標準, 中華民國98年1月15日修正發佈. 9. ATSDR, Toxicological profile for benzene. Agency for Toxic Substances and Disease Registry (ATSDR),, 2007. 10. ATSDR, Toxicological profile for toluene. Agency for Toxic Substances and Disease Registry (ATSDR),, 2000. 11. ATSDR, Toxicological profile for ethylbenzene. Agency for Toxic Substances and Disease Registry (ATSDR),, 2007. 12. ATSDR, Toxicological profile for xylene. Agency for Toxic Substances and Disease Registry (ATSDR),, 2007. 13. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 2008. 14: p. 145-156. 14. USEPA, Permeable reactive barrier technologies for contaminant remediation. United States Environmental Protection Agency (USEPA) , 1998. 15. USEPA, A citizen''s guide to chemical oxidation. United States Environmental Protection Agency (USEPA), EPA 542-F-01-013, 2001b. 16. Sperry, K.L., J. Cookson, Jr., In Situ Chemical Oxidation: Design & Implementation. ITRC Presentation to New Jersey Department of Environmental Protection, October 30, 2002. 17. ATSDR, Interaction profile for benzene, toluene, ethylbenzene and xylenes (BTEX). Agency for Toxic Substances and Disease Registry (ATSDR),, 2001. 18. Johnston, C.D., Rayner, J.L., Patterson B.M., Davis, G.B., Volatilisation and biodegradation during air sparging of dissolved BTEX-contaminated groundwater. Journal of Contaminant Hydrology, 1998. 6: p. 377-404. 19. Bruell, C.J., Soil Remediation by Air Sparging, in Encyclopedia of Environmental Analysis and Remediation. R.A. Meyers, 1996, John Wiley & Sons, Inc., New York. 20. USEPA, Off-Gas Treatment Technologies for Soil Vapor Extraction Systems: State of the Practice. United States Environmental Protection Agency (USEPA), 2006. 21. Schifftner, K.C. and H.E. Hesketh, Wet Scrubber. CRC Press, Boca Raton, FL, 1996. 22. Lawson, R.B. and C.D. Adam, Enhanced VOC absorption using the ozone/hydrogen peroxide advanced oxidatin process. Journal of the Air & Waste Management Association, 1999. 49: p. 1315-1323. 23. Kastner, J.R. and K.C. Das, Wet scrubber analysis of volatile organic compound removal in the rendering industry. Journal of the Air & Waste Management Association, 2002. 52: p. 459-469. 24. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 2004. 55: p. 1213-1223. 25. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere, 2004. 55: p. 1225-1233. 26. Liang, C., Huang, C.-F., Mohanty, N., Lu, C.-J., Kurakalva, R.M., Hydroxypropyl-beta-Cyclodextrin-Mediated Iron-Activated Persulfate Oxidation of Trichloroethylene and Tetrachloroethylene. Industrial & Engineering Chemistry Research, 2007. 46: p. 6466-6479. 27. Crimi, M.L., J. Taylor, Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil Sediment Contam., 2007. 16: p. 29-45. 28. Huang, K.C., Couttenye, R.A., Hoag, G.E., Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 2002. 49: p. 413-420. 29. Huang, K.C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P.A., Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere, 2005. 61: p. 551-560. 30. Huie, R.E., Clifton, C.L., Neta, P., Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 1991. 38: p. 477-481. 31. House, D.A., Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962. 62: p. 185-203. 32. Travina, O.A., Kozlov, Y.N., Purmal, A.P., Rod’ko, I.Y., Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russian Journal of Physical Chemistry, 1999. 73: p. 1215-1219. 33. Buxton, G.V., Malone, T.N., Salmon, G.A., Reaction of SO4•- with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1997. 93: p. 2893-2897. 34. Kolthoff, I.M., Stenger, V.A., Volumetric analysis, Second revised edition, Volume II Titration Methods: Acid-base, precipitation and complex reactions. Interscience Publishers, Inc., New York, 1947. 35. Sekiguchi, H., Ando, M., Kojima, H., Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor. Journal of Physics D: Applied Physics, 2005. 38: p. 1722-1727. 36. Pignatello, J.J., Baehr, K., Ferric complexes as catalysts for “Fenton” degradation of 2,4-D and metolachlor in soil. Journal of Environmental Quality, 1994. 23: p. 365–370. 37. Pignatello, J.J., Day, M., Mineralization of methyl parathion insecticide in soil by hydrogen peroxide activated with iron(III)–NTA or HEIDA complexs. Hazardous Waste and Hazardous Materials, 1996. 13: p. 237–244. 38. Neta, P., Madhavan, V., Zemel, H., Fessenden, R., Rate constants and mechanism of reaction of SO4-․ with aromatic compounds. Journal of the American Chemical Society, 1977. 99: p. 163–164. 39. ATSDR, Benzene Toxicity. Agency for Toxic Substances and Disease Registry (ATSDR),, 2001. 40. Baldauf, G., Brauch, H.-J., Bruchet, A., Haist-Gulde, B., Mallevialle, J., Rittmann, B. E., Kooij, D.v.d., Dijk-Looijaard, A.M. v., Water Pollution :Drinking Water and Drinking Water Treatment. Handbook of environmental chemistry ed. J. Hrubec., Vol. 5, New York Springer, 1995. 41. Renzo, D.J.D., Pollution Control Technology for Industrial Wastewater. Pollution technology review, Park Ridge, New Jersey: Noyes Data corporation, 1981. 42. Radovic, L.R., Silva, I. F., Ume, J.I., Menédez, J.A., Leon, C. A. Leon Y., Scaroni, A. W., An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon, 1997. 35: p. 1339-1348. 43. Villacaňas, F., Pereira, Manuel Fernando R., Órfão, José J.M., Figueiredo, José L., Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 2006. 293: p. 128-136. 44. Haghseresht, F., Nouri, S., Finnerty, J.J., Lu, G.Q., Effects of Surface Chemistry on Aromatic Compound Adsorption from Dilute Aqueous Solutions by Activated Carbon. Journal of Physical Chemistry B, 2002. 106(42): p. 10935-10943. 45. Karanfil, T., Dastgheib, S.A., Trichloroethylene adsorption by fibrous and granular activated carbons: aqueous phase, gas phase, and water vapor adsorption studies. Environmental Sceience & Technology, 2004. 38: p. 5834-5841. 46. Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S., Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. Journal of Hazardous Materials, 2007. 146: p. 237-242. 47. Blowes, D.W., Ptacek, Carol J., Benner, Shawn G., McRae, Che W. T., Bennett, Timothy A., Puls, Robert W., Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology, 2000. 45: p. 123-137. 48. Crimi, M.L., Taylor, J., Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil & Sediment Contamination, 2007. 16: p. 29-45. 49. Liang, C., Huang, Chiu-Fen, Chen, Yan-Jyun, Potential for activated persulfate degradation of BTEX contamination. Water Research, 2008. 42: p. 4091-4100. 50. Liang, C., Chen, Yan-Jyun, Chang, Keng-Jung, Evaluation of Persulfate Oxidative Wet Scrubber for Removing BTEX Gases. Journal of Hazardous Materials, 2009. 164: p. 571-579. 51. Travina, O.A., Kozlov, Y.N., Purmal, A. P., Rod''ko I.Y., Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russian Journal of Physical Chemistry, 1999. 73: p. 1215-1219. 52. House, D.A., Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, 1962. 62: p. 185-203. 53. Snoeyink, Vernon L., Walter J. Weber, J., The Surf ace Chemistry of Active Carbon A Discussion of Structure and Surface Functional Groups. Environmental Science & Technology, 1967. 1: p. 228-234. 54. Georgi, A., Kopinke, F., Interaction of adsorption and catalytic reaction in water decontamination processes. Part I. oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 2005. 58: p. 9-18. 55. Huang, H.-H., Lu, Ming-Chun, Chen, Jong-Nan, Lee, Cheng-Te, Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere, 2003. 51: p. 935-943. 56. Okawa, K., Suzuki, Kazuyoshi, Takeshita, Toshihiro, Nakano, Katsuyuki, Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation. Water Research, 2007. 41: p. 1045-1051. 57. Masaru Kimura, I.M., Discovery of the Activated-Carbon Radical AC+ and the Novel OXidation-Reactions Comprising the AC/AC+ Cycle as aCatalyst in an Aqueous Solution. Bulletin of the Chemical Society of Japan, 1994. 67: p. 2357-2360. 58. Arienzo, M., Oxidizing 2,4,6-trinitrotoluene with pyrite-H2O2 suspensions. Chemosphere, 1999. 39: p. 1629-1638. 59. Ludwig, R.D., Smyth, David J. A., Blowes, David W., Spink, Laura E., Wilkin, Richard T., Jewett, David G., Weisener, Christopher J., Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-compost PRB. Environmental Sceience & Technology, 2009. 43(1970-1976). 60. Cao, S., Chen, Guohua, Hu, Xijun, Yue, Po Lock, Catalytic wet air oxidation of wastewater containing ammonia and phenol over activated carbon supported Pt catalysts. Catalysis Today, 2003. 88: p. 37-47. 61. Noh, J.S., Schwarz, James A., Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon, 1990. 28: p. 675-682. 62. Liang, C., Huang, Chiu-Fen, Mohanty, Nihar, Kurakalva, Rama Mohan, A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 2008. 73: p. 1540-1543. 63. Luckking, F., Köser, H., Jank, M., Pitter, A., Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research, 1998. 32: p. 2607-2614. 64. P Pradhan, B.K., Sandle, N. K., Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999. 37: p. 1323-1332. 65. Salame, I.I., Bandosz, Teresa J., Study of Water Adsorption on Activated Carbons with Different Degrees of Surface Oxidation. Journal of Colloid and Interface Science, 1999. 210: p. 367-374. 66. Salame, I.I., Bandosz, Teresa J., Role of surface chemistry in adsorption of phenol on activated carbons. Journal of Colloid and Interface Science, 2003. 264: p. 307-312. 67. Laila B Khalil, B.S.G.a.T.A.T., Decomposition of H2O2 on activated carbon obtained from olive stones. Journal of Chemical Technology & Biotechnology, 2001. 76: p. 1132-1140. 68. Liang, C., Lin, Ya-Ting, Shin, Wu-Hang, Persulfate regeneration of trichloroethylene spent activated carbon. Journal of Hazardous Materials, 2009. 168: p. 187-192. 69. Luther, G.W.I., The frontier-molecular-orbital theory approach in geotechnival processes. in Aquatic Chemical Kinetics, Stumm, W. (Ed), John Wiley & Sons, Inc., New York, NY, p. 173, 1990. 70. Tan, I.A.W., Hameed, B. H., Ahmad, A. L., Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chemical Engineering Journal, 2007. 127: p. 111-119. 71. Mohd Din, A.T., Hameed, B.H., Ahmad, Abdul L., Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials, 2008. 161: p. 1522-1529. 72. Tessmer, C.H., Vidic, R.D., Uranowski, L.J., Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols. Environmental Sceience & Technology, 1997. 31: p. 1872-1878. 73. Alvarez, P.M., Beltran, F. J., Gomez-Serrano, V., Jaramillo, J., Rodriguez, E. M., Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Research, 2004. 38: p. 2155-2165. 74. Georgi, A., Kopinke, Frank-Dieter, Interaction of adsorption and catalytic reactions in water decontamination processes: Part I. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied Catalysis B: Environmental, 2005. 58: p. 9-18. 75. Matta, R., Hanna, Khalil, Chiron, Serge, Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of The Total Environment, 2007. 385: p. 242-251. 76. Das, T.N., Reactivity and Role of SO5‧- Radical in Aqueous Medium Chain Oxidation of Sulfite to Sulfate and Atmospheric Sulfuric Acid Generation. Journal of Physical Chemistry, 2001. 105: p. 9142-9155. 77. Kan, E., Huling, S.G., Effects of Temperature and Acidic Pre-Treatment on Fenton-Driven Oxidation of MTBE-Spent Granular Activated Carbon. Environmental Sceience & Technology, 2009. 43: p. 1493-1499.
地下儲油槽或油品運輸過程中意外洩漏油品物質而污染土壤與地下水為目前之環境問題,由於汽油碳氫化合物為比水輕非水相溶液 (light nonaqueous phase liquids, LANPLs),其成分含有苯、甲苯、乙苯及二甲苯 (簡稱BTEX) 揮發性物質,因此當土壤及地下水遭受汽油碳氫化合物污染時,BTEX污染物可能存在於土壤未飽和層及溶解於飽和層中並隨著地下水流擴散。
土壤氣體萃取法 (SVE) 為一項廣泛使用於整治未飽和層汽油碳氫化合物污染土壤之技術,然而對於所抽取之廢氣含有BTEX污染物質,若未經適當處理而予以排放,將對環境造成污染。傳統洗滌塔藉由洗滌溶劑之吸收作用將廢氣溶於液相中以達到移除氣相污染物之目的,然而水洗滌之效能可能受限於欲處理之廢氣其特性影響,例如BTEX之低水中溶解度,而無法處理BTEX廢氣;二價鐵活化過硫酸鹽 (sodium persulfate, SPS) 產生硫酸根自由基 (SO4-‧, E0 = 2.4 V) 強氧化劑分解氧化有機污染物,為一有效之氧化程序,因此本研究嘗試結合洗滌塔及過硫酸鹽高級氧化技術,即過硫酸鹽氧化洗滌塔 (Persulfate Oxidative Scrubber, POS) 之發展應用進行探討。實驗結果顯示,以檸檬酸螯合二價鐵 (Fe2+/CA) 活化過硫酸鹽能快速有效氧化水溶相BTEX,且最佳Fe2+/CA活化劑劑量莫耳比為5/3,將此氧化條件應用於POS系統探討活化劑濃度與添加速度之影響,結果證實BTEX氣相污染物去除率可達50%且液相中無溶解之BTEX之存在。
活性碳 (activated carob, AC) 填充之透水性反應牆 (PRB) 為一被動式整治技術可用以處理飽和含水層中溶解相污染物 (例如苯),然而活性碳僅具有分離污染物之能力,吸附飽和之活性碳仍需進一步處理,因此本實驗藉由過硫酸鹽 及黃鐵礦 (pyrite, FeS2) 活化過硫酸鹽兩種氧化系統再生吸附飽和之活性碳並評估其成效,實驗結果顯示,當活性碳與過硫酸鹽反應後,活性碳之比表面積、孔隙體積及鹼度下降,然而其酸度提升,且經過硫酸鹽氧化後之活性碳,表面電子減少並生成酸性官能基,因而造成活性碳吸附苯之能力下降。此外氧化前後之活性碳吸附行為則分別使用假一階、假二階動力及內顆粒擴散模式進行分析,並藉由Freundlich 與 Langmulir 兩種等溫方程式比較其吸附能力;經由SPS/AC與SPS/AC/FeS2兩種氧化系統實驗結果顯示,苯於水溶相及吸附相藉由黃鐵礦活化過硫酸鹽處理具有較佳之效果,而於活性碳再生試驗結果顯示,過硫酸鹽具有氧化破壞吸附相苯污染物之能力,然而過硫酸鹽若無黃鐵礦活化則對於吸附相苯污染物之處理主要具有脫附效果。黃鐵礦之添加以活化過硫酸鹽可確保處理過程中水溶相中苯之完全氧化去除,此外相較於再生前活性碳對於苯之吸附量,再生後活性碳約仍保有70%吸附量,吸附容量下降之主要原因為苯殘留於活性碳上且未能完全予以移除所致。此部分實驗結果證實藉由過硫酸鹽或黃鐵礦活化過硫酸鹽氧化方式對於再生活性碳具有潛在應用性。

Contamination of gasoline hydrocarbons occurred in the subsurface environment can be divided into two zones: the saturated zone and unsaturated zone. Soil vapor extraction (SVE) technology is often used to remediate contamination in the unsaturated zone while permeable reactive barrier (PRB) technology can be used to remediate groundwater in the saturated zone. Hence, this study focused on evaluation of treatment for SVE exhausted gases and potential for using activated carbon (AC) as PRB reactive material and regenerating AC with oxidation.
SVE is a method widely used to remediate soil and groundwater contamination in the unsaturated zone. These hazardous contaminants are mainly attributable to the compounds - benzene, toluene, ethylbenzene, and xylenes (known collectively as BTEX). Exhaust gas from SVE may contain BTEX, and therefore must be treated before being discharged. This study evaluated the use of iron activated persulfate chemical oxidation in conjunction with a wet scrubbing system, i.e., a persulfate oxidative scrubber (POS) system, to destroy BTEX gases. The persulfate anions can be activated by citric acid (CA) chelated Fe2+ to generate sulfate radicals (SO4-•, Eo = 2.4 V), which may rapidly degrade BTEX in the aqueous phase and result in continuous destruction of the BTEX gases. The results show that persulfate activation occurred as a result of continuous addition of the citric acid chelated Fe2+ activator, which readily oxidized the dissolved BTEX. Based on initial results from the aqueous phase, a suitable Fe2+/CA molar ratio of 5/3 was determined and used to initiate activation in the subsequent POS system tests. In the POS system, using persulfate as a scrubber solution and with activation by injecting Fe2+/CA activators under two testing conditions, varying iron concentration and pumping rates, resulted in an approximate 50% removal of BTEX gases. During the course of the tests which in corporate activation, a complete destruction of BTEX was achieved in the aqueous phase. It is noted that no removal of BTEX occurred in the control tests which did not include activation. The results of this study would serve as a reference for future studies into the practical chemical oxidation of waste gas streams.
Furthermore, this study investigated the potential of using of AC as a PRB reactive material for the adsorption of benzene contaminant. Sodium persulfate (SPS) or pyrite (FeS2) activated SPS oxidation were used for the regeneration of spent AC. During AC surface interaction with persulfate, alternations in AC characteristics were observed. These include a decrease in surface area, pore volume and basicity, and an increase in the acidity of the AC. The observed adsorption behaviors of AC and PS oxidized AC (OAC) have been characterized using pseudo-first and, -second order kinetics, intra-particle diffusion models, and Freundlich and Langmuir isotherms. Results indicate that persulfate oxidation of AC caused a loss of electrons and a reduction in absorptive capacity due to the formation of acidic functional groups on the AC. Concerning the reactants that can be used for oxidation of the benzene contaminants, SPS/AC/FeS2, as oppose to SPS/AC, can achieve benzene destruction in both the aqueous and the sorbed phases. Furthermore, regeneration of benzene spent AC by SPS or SPS/FeS2 revealed that PS oxidation resulted primarily in desorption of benzene over direct oxidation of AC sorbed benzene. In contrast, the SPS/FeS2 system achieved complete oxidation of desorbed benzene in the aqueous phase while also oxidizing sorbed benzene. Results of re-adsorption showed that oxidative regeneration recovered around 70% of the AC adsorption sites and the remaining capacity was mostly occupied by the residual benzene remaining on the AC. This study demonstrates that SPS or FeS2 activated SPS oxidation is an effective alternative method for regeneration of spent AC.
其他識別: U0005-1307200918134200
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.