Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorSu, Chih-Gangen_US
dc.identifier.citation參考文獻 Abdel-Halim, K.S., Khedr, M.H., Nasr, M.I., Abdel-wahab, M.S., 2008. Carbothermic reduction kinetics of nanocrystallite Fe2O3/NiO composites for the production of Fe/Ni alloy. Journal of Alloys and Compounds 463, 585-590. Amara, D., Felner, I., Nowik, I., Margel, S., 2009. Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloids and Surfaces A: Physicochemical and Engineering Aspects 339, 106-110. Arnold, W.A., Roberts, A.L., 2000. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environmental Science & Technology 34, 1794-1805. ATSDR, 1997. Toxicological Profile for Trichloroethylene. Agency for Toxic Substances & Disease Registry. Public Health Service. Balko, B.A., Tratnyek, P.G., 1998. Photoeffects on the reduction of carbon tetrachloride by zero-valent Iron. The Journal of Physical Chemistry B 102, 1459-1465. Bonder, M.J., Zhang, Y., Kiick, K.L., Papaefthymiou, V., Hadjipanayis, G.C., 2007. Controlling synthesis of Fe nanoparticles with polyethylene glycol. Journal of Magnetism and Magnetic Materials 311, 658-664. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E., 1940. On a theory of the van der waals adsorption of gases. Journal of the American Chemical Society 62, 1723-1732. Burris, D.R., Campbell, T.J., Manoranjan, V.S., 1995. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environmental Science & Technology 29, 2850-2855. Campbell, T.J., Burris, D.R., Roberts, A.L., Wells, J.R., 1997. Trichloroethylene and terachloroethylene reduction in a metallic iron-water-vapor batch system. Environmental Toxicology and Chemistry 16, 625-630. Celebi, O., Uzum, C., Shahwan, T., Erten, H.N., 2007. A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. Journal of Hazardous Materials 148, 761-767. Chen, S., Feng, J., Guo, X., Hong, J., Ding, W., 2005. One-step wet chemistry for preparation of magnetite nanorods. Materials Letters 59, 985-988. Chingombe, P., Saha, B., Wakeman, R.J., 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon 43, 3132-3143. Chintawar, P.S., Greene, H.L., 1997. Adsorption and catalytic destruction of trichloroethylene in hydrophobic zeolites. Applied Catalysis B: Environmental 14, 37-47. Choe, S., Lee, S.-H., Chang, Y.-Y., Hwang, K.-Y., Khim, J., 2001. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere 42, 367-372. Choi, H., Agarwal, S., Al-Abed, S.R., 2009a. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: Mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology 43, 488-493. Choi, H., Al-Abed, S.R., Agarwal, S., 2009b. Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl. Environmental Science & Technology 43, 4137-4142. Choi, H., Al-Abed, S.R., Agarwal, S., Dionysiou, D.D., 2008. Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials 20, 3649-3655. Chowdhury, P.S., Arya, P.R., Raha, K., 2008. Synthesis and characterization of α-Fe2O3 nanoparticles of different shapes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, 212-216. Dong, G.J., Ru, X.L., Han, H.B., Wang, G.X., 2008. Reaction characteristic of Fe-Ni nano-alloy with organic chloride. Materials Research Bulletin 43, 2327-2333. Dries, J., Bastiaens, L., Springael, D., Agathos, S.N., Diels, L., 2005. Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environmental Science & Technology 39, 8460-8465. Elsner, M., Chartrand, M., VanStone, N., Couloume, G.L., Lollar, B.S., 2008. Identifying abiotic chlorinated ethene degradation: Characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environmental Science & Technology 42, 5963-5970. Fan, H.-J., Chen, I.-W., Lee, M.-H., Chiu, T., 2007. Using FeGAC/H2O2 process for landfill leachate treatment. Chemosphere 67, 1647-1652. Farrell, J., Kason, M., Melitas, N., Li, T., 2000. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science & Technology 34, 514-521. Feng, B., Hong, R.Y., Wang, L.S., Guo, L., Li, H.Z., Ding, J., Zheng, Y., Wei, D.G., 2008. Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects 328, 52-59. Fountain, J.C., 1998. Technology for dense nonaqueous phase liquid source zone remediation, Technology Evaluation Report TE 98-02 Ground-Water Remediation Technologies Analysis Center. Gavaskar, A.R., 1999. Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials 68, 41-71. Ghauch, A., Tuqan, A., Assi, H.A., 2009. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution 157, 1626-1635. Giasuddin, A.B.M., Kanel, S.R., Choi, H., 2007. Adsorption of humic acid onto nanoscale zerovalent iron and Its effect on arsenic removal. Environmental Science & Technology 41, 2022-2027. Gotpagar, J., Grulke, E., Tsang, T., Bhattacharyya, D., 1997. Reductive dehalogenation of trichloroethylene using zero-valent iron. Environmental Progress 16, 137-143. Guo, Z., Chen, Y., Zhou, W., Huang, Z., Hu, Y., Wan, M., Bai, F., 2008. Facilely dispersible magnetic nanoparticles prepared by a surface-initiated atom transfer radical polymerization. Materials Letters 62, 4542-4544. He, F., Zhao, D., 2007. Manipulating the size and dispersibility of zerovalenti ron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology 41, 6216-6221. He, F., Zhao, D., Liu, J., Roberts, C.B., 2007. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research 46, 29-34. Hoch, L.B., Mack, E.J., Hydutsky, B.W., Hershman, J.M., Skluzacek, J.M., Mallouk, T.E., 2008. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology 42, 2600-2605. Huang, Y.H., Zhang, T.C., 2002. Kinetics of nitrate reduction by iron at near neutral pH. Journal of Environmental Engineering 128, 604-611. Johnson, T.L., Scherer, M.M., Tratnyek, P.G., 1996. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology 30, 2634-2640. Jozwiak, W.K., Kaczmarek, E., Maniecki, T.P., Ignaczak, W., Maniukiewicz, W., 2007. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General 326, 17-27. Kamon, M., Endo, K., Katsumi, T., 2003. Measuring the k-s-p relations on DNAPLs migration. Engineering Geology 70, 351-363. Kanel, S.R., Greneche, J.-M., Choi, H., 2006. Arsenic(V) removal from groundwater nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology 40, 2045-2050. Kanel, S.R., Manning, B., Charlet, L., Choi, H., 2005. Removal of Arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology 39, 1291-1298. Kim, H., Hong, H.-J., Lee, Y.-J., Shin, H.-J., Yang, J.-W., 2008. Degradation of trichloroethylene by zero-valent iron immobilized in cationic exchange membrane. Desalination 223, 212-220. King, R.J., 2000. Minerals explained 30: Hematite. Geology Today 16, 158-160. Kohn, T., Arnold, W.A., Roberts, A.L., 2006. Reactivity of Substituted Benzotrichlorides toward Granular Iron, Cr(II), and an Iron(II) Porphyrin: A Correlation Analysis. Environmental Science & Technology 40, 4253-4260. Kommineni, S., Ela, W.P., Arnold, R.G., Huling, S.G., Hester, B.J., Betterton, E.A., 2003. NDMA treatment by sequential GAC adsorption and Fenton-driven destruction. Environmental Engineering Science 20, 361-373. Li, A., Tai, C., Zhao, Z., Wang, Y., Zhang, Q., Jiang, G., Hu, J., 2007. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology 41, 6841-6846. Li, L., Fan, M., Brown, R.C., Leeuwen, J.V., Wang, J., Wang, W., Song, Y., Zhang, P., 2006a. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Environmental Science & Technology 36, 405-431. Li, L., Quinlivan, P.A., Knappe, D.R.U., 2002. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40, 2085-2100. Li, X.-Q., Elliott, D.W., Zhang, W.-X., 2006b. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 31, 111-122. Li, Z., Jones, H.K., Bowman, R.S., Helferich, R., 1999. Enhanced reduction of chromate and PCE pelletized surfactant-modified zeolite/zerovalent iron. Environmental Science & Technology 33, 4326-4330. Liang, C., Lai, M.-C., 2008. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science 25, 1071-1078. Liang, F., Fan, J., Guo, Y., Fan, M., Wang, J., Yang, H., 2008. Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Industrial & Engineering Chemistry Research 47, 8550-8554. Lien, H.-L., Zhang, W.-X., 2007. Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental 77, 110-116. Liu, C.-C., Tseng, D.-H., Wang, C.-Y., 2006. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Materials 136, 706-713. Liu, X.-M., Fu, S.-Y., Xiao, H.-M., Huang, C.-J., 2005a. Preparation and characterization of shuttle-likeα-Fe2O3 nanoparticles by supermolecular template. Journal of Solid State Chemistry 178, 2798-2803. Liu, Y., Lowry, G.V., 2006. Effect of particle age (Fe0 content) and solution pH on nZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology 40, 6085-6090. Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., Lowry, G.V., 2005b. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology 39, 1338-1345. Liu, Y., Phenrat, T., Lowry, G.V., 2007. Effect of TCE concentration and dissolved groundwater solutes on nZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology 41, 7881-7887. Lowry, G.V., Johnson, K.M., 2004. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology 38, 5208-5216. Lu, M.-C., Anotai, J., Liao, C.-H., Tin, W.-P., 2004. Dechlorination of hexachlorobenzene by zero-valent iron. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 8, 136-140. Ma, X., Xu, F., Chen, L., Zhang, Z., Du, Y., Xie, Y., 2005. Magnetic fluids for synthesis of the stable adduct γ-Fe2O3/CTAB/Clay. Journal of Crystal Growth 280, 118-125. Mackay, D.M., Cherry, J.A., 1989. Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology 23, 630-636. Matheson, L.J., Tratnyek, P.G., 1994. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology 28, 2045-2053. Moreno-Castilla, C., Lopez-Ramon, M.V., Carrasco-Marin, F., 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38, 1995-2001. Nurmi, J.T., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., Driessen, M.D., 2005. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science & Technology 39, 1221-1230. Odziemkowski, M.S., Schuhmacher, T.T., Gillham, R.W., Reardon, E.J., 1998. Mechanism of oxide film formation on iron in simulating groundwater solutions: Raman spectroscopic studies. Corrosion Science 40, 371-389. Okwi, G.J., Thomson, N.R., Gillham, R.W., 2005. The impact of permanganate on the ability of granular iron to degrade trichloroethene. Ground Water Monitoring & Remediation 25, 123-128. Oliveira, H.P.d., Andrade, C.A.S., Melo, C.P.d., 2008. Electrical impedance spectroscopy investigation of surfactant-magnetite-polypyrrole particles. Journal of Colloid and Interface Science 319, 441-449. Orth, W.S., Gillham, R.W., 1996. Dechlorination of Trichloroethene in aqueous solution using Fe0. Environmental Science & Technology 30, 66-71. Parshetti, G.K., Doong, R.a., 2009. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. Water Research 43, 3086-3094. Ponder, S.M., Darab, J.G., Mallouk, T.E., 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology 34, 2564-2569. Quinlivan, P.A., Li, L., Knappe, D.R.U., 2005a. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673. Quinlivan, P.A., Li, L., Knappe, D.R.U., 2005b. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research 39, 1663-1673. Ramirez, J.H., Maldonado-Hodar, F.J., Perez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., Madeira, L.M., 2007. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental 75, 312-323. Roberts, A.L., Totten, L.A., Arnold, W.A., Burris, D.R., Campbell, T.J., 1996. Reductive elimination of chlorinated ethylenes by zero-valent metals. Environmental Science & Technology 30, 2654-2659. Rodriguez-Reinoso, F., 1998. The role of carbon materials in heterogeneous catalysis. Carbon 36, 159-175. Ruthven, D.M., 1984. Principles of Adsorption and Adsorption Processes. John Wiley & Sons, New York. Scherer, M.M., Richter, S., Valentine, R.L., Alvarez, P.J.J., 2000. Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Critical Reviews in Microbiology 30, 363-411. Schrick, B., Hydutsky, B.W., Blough, J.L., Mallouk, T.E., 2004. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials 16, 2187-2193. Shea, P.J., Machacek, T.A., Comfort, S.D., 2004. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution 132, 183-188. Sohn, K., Kang, S.W., Ahn, S., Woo, M., Yang, S.-K., 2006. Fe(0) nanoparticles for nitrate reduction: Stability, reactivity, and transformation. Environmental Science & Technology 40, 5514-5519. Song, H., Carraway, E.R., 2005. Reduction of chlorinated ethanes by nanosized zero-valent iron: Kinetics, pathways, and effects of reaction conditions. Environmental Science & Technology 39, 6237-6245. Song, H., Carraway, E.R., 2008. Catalytic hydrodechlorination of chlorinated ethenes by nanoscale zero-valent iron. Applied Catalysis B: Environmental 78, 53-60. Stumm, W., 1992. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. John Wiley & Sons, New York. Suffet, I.H., McGuire, M.J., 1980. Activated Carbon Adsorption of Organics from the Aqueous Phase. Ann Arbor Science, Michigan. Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., Li, M., 2007. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A 80, 333-341. Sun, Y., Takaoka, M., Takeda, N., Matsumoto, T., Oshita, K., 2006. Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron. Chemosphere 65, 183-189. Suthersan, S.S., 1996. Remediation Engineering Design Concepts. CRC Press, New York. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 14, 145-156. Till, B.A., Weathers, L.J., Alvarez, P.J.J., 1998. Fe(0)-supported autotrophic denitrification. Environmental Science & Technology 32, 634-639. Tratnyek, P.G., Johnson, R.L., 2006. Nanotechnologies for environmental cleanup. Nano Today 1, 44-48. Uludag-Demirer, S., Bowers, A.R., 2001. Gas phase reduction of chlorinated VOCs by zero valent iron. Journal of Environmental Science and Health 36, 1535-1547. USEPA, 1991. Guide for conducting treatability studies under cercal: Soil vapor extraction interim guidance, EPA-540-2-91-019A USEPA(United States Environmental Protection Agency). USEPA, 1998. Permeable reactive barrier technologies for contaminant remediation, EPA 600-R-98-125. USEPA(United States Environmental Protection Agency). USEPA, 2000. Ground water currents, EPA 542-N-00-002. USEPA(United States Environmental Protection Agency). USEPA, 2001a. A Citizen''s guide to in situ flushing, EPA 542-F-01-011. USEPA(United States Environmental Protection Agency). USEPA, 2001b. A citizen''s guide to pump and treat, EPA 542-F-01-025. USEPA(United States Environmental Protection Agency). USEPA, 2002. Field applications of in situ remediation technologies: Permeable reactive barriers. USEPA(United States Environmental Protection Agency). Vogel, T.M., Criddle, C.S., McCarty, P.L., 1987. Transformations of halogenated aliphatic compounds. Environmental Science & Technology 21, 722-736. Wang, C.-B., Zhang, W.-X., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 31, 2154-2156. Wang, W., Jin, Z.-h., Li, T.-l., Zhang, H., Gao, S., 2006. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65, 1396-1404. Xiong, Y., Ye, J., Gu, X., Chen, Q., 2008. Synthesis and magnetic properties of iron oxide nanoparticles/C and α-Fe/iron oxide nanoparticles/C composites. Journal of Magnetism and Magnetic Materials 320, 107-112. Xu, J., Bhattacharyya, D., 2008. Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature. The Journal of Physical Chemistry C 112, 9133-9144. Zhang, H., Jin, Z.-h., Han, L., Qin, C.-h., 2006. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Transactions of Nonferrous Metals Society of China 16, 345-349. Zhang, P., Tao, X., Li, Z., Bowman, R.S., 2002. Enhanced perchloroethylene reduction in column systems using surfactant-modified zeolite/zero-valent iron pellets. Environmental Science & Technology 36, 3597-3603. Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G.L., Piringer, G., John, V.T., 2008. Reactivity characteristics of nanoscale zerovalent iron#silica composites for trichloroethylene remediation. Environmental Science & Technology 42, 4494-4499. 行政院環保署, 2009a. 土壤及地下水污染整治基金管理委員會/基金介紹. 行政院環保署. 行政院環保署, 2009b. 毒性化學物質災害防救查詢系統. 行政院環保署. 行政院環保署, 2009c. 環保法規. 行政院環保署. 行政院環保署, 2009d. 土壤及地下水污染整治基金管理委員會/各年度年報. 行政院環保署. 林智仁, 羅勝全, 2003. 場發射穿透式電子顯微鏡簡介. 工業材料雜誌 201, 90-98. 林麗娟, 1994. X光繞射原理及其應用. 工業材料雜誌 86, 100-109. 洪旭文, 林財富, 2002. 透水性反應牆之設計介紹. 工業污染防治 21, 114-135. 財政部關稅總局統計室, 2009. 中華民國台灣地區進出口貿易統計月報. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊, 13-20. 陳谷汎, 高志明, 蔡啟堂, 2002. 土壤及地下水復育技術. 工業污染防治 21, 136-157. 陳家洵, 1997. 地下水污染之討論. 應用倫理研究通訊 3, 19-23. 勞工安全衛生研究所, 2009. 職場三氯乙烯容許標準建議值文件. 石武航, 2008. 活性碳吸附結合過硫酸鹽氧化三氯乙烯污染物之可行性評估. 環境工程學系碩士論文. 國立中興大學, 台中, p. 89. 黃宏勝, 林麗娟, 2003. FE-SEM/CL/EBSD 分析技術簡介. 工業材料雜誌 201, 99-108. 楊逸楨, 2007. 土壤無機相對有機污染物吸附特性研究. 環境工程學系碩士論文. 國立中央大學, 桃園, p. 105. 廖家敏, 2007. RCA健康問題之社會結構. 環境工程學系碩士論文. 國立成功大學, 台南, p. 210. 劉志忠, 2006. 零價鐵反應牆應用於三氯乙烯還原脫氯之整合研究. 環境工程學系博士論文. 國立中央大學, 桃園, p. 274. 蔡政勳, 2000a. 零價鐵反應牆處理三氯乙烯污染物之反應行為研究. 環境工程學系碩士論文. 國立中央大學, 桃園, p. 154. 蔡璨樺, 2000b. 零價鐵技術袪除三氯乙烯之研究. 環境工程學系碩士論文. 國立中央大學, 桃園, p.109. 鄭信民, 林麗娟, 2002. X光繞射應用簡介. 工業材料雜誌 181, 100-108.zh_TW
dc.description.abstract三氯乙烯(TCE)為土壤及地下水中常見之有機氯化溶劑污染物,屬比水重非水相液體,若意外洩漏至地表下,將成為土壤與地下水長期之污染源。透水性反應牆(PRB)為一被動式之土壤及地下水污染整治方法,零價鐵(ZVI)與活性碳(AC)為PRB廣泛採用之填充材質,其中ZVI可藉由表面與污染物接觸,對TCE進行還原脫氯反應,以達到降解污染物之目的,且其反應性與表面積呈正相關。此外AC則藉由其多孔隙與具多種表面官能基之特性,可經物理及化學性吸附,將污染物移除。本研究嘗試將奈米級零價鐵(nZVI)披覆至活性碳上,並對於此複合材料其結合吸附及還原反應用以處理TCE污染之效能進行評估。 實驗結果顯示,使用硼氫化鈉還原法將nZVI披覆至AC上為一可行之製備程序,且經掃描式電子顯微鏡分析,得知不同鍛燒溫度下所製備得之複合材料上nZVI之粒徑約為50-100nm;此外分散劑聚乙二醇於製備程序中之使用,對於nZVI粒徑大小並無明顯影響,但可得較佳之nZVI於AC上之分散性。nZVI/AC複合材料降解TCE所生成之降解產物氯離子與僅nZVI存在下所得之結果相較,可知複合材料具較佳之Cl-生成程度;反應過後之複合材料,可藉由熱碳還原法予以再生利用,提供此複合材料回收再利用之方法。zh_TW
dc.description.abstractChlorinated solvents such as trichloroethylene (TCE) are among the most common soil and groundwater contaminants. If TCE, as a dense non-aqueous phase liquid, is accidently released in the subsurface, its presence would become a continuous source of contamination. Permeable reactive barrier (PRB) is a passive technology for in situ clean-up of groundwater contamination. Among reactive materials filled within PRB, zero valent iron (ZVI) and activated carbon (AC) are widely used reactive materials. ZVI undergoes reductive dechlorination of TCE when containments are in contact with ZVI surface. Therefore, specific surface area of ZVI is highly correlated with high reactivity. In addition, AC with high surface area and multiple surface functional groups is a good adsorbent for removing contaminants. In this study, a process of coating nano zero valent iron (nZVI) onto AC, namely nZVI/AC, was developed. Then evaluation of the synthesized nZVI/AC composites for remediating TCE contamination was conducted. The results present a successful approach of combining impregnation and borohydride reduction to synthesize nZVI/AC composites. SEM analysis demonstrates that the size of nZVI on AC synthesized under different calcined temperatures is about 50-100 nm. Furthermore, the addition of polyethylene glycol dispersant for preparation of nZVI/AV reveals no effect on nZVI particle size. However, a well dispersion of nZVI on AC is achieved. When comparing nZVI/AC to nZVI on degradations of TCE, nZVI/AC reveals higher percentage of dechlorination than using nZVI only. The used nZVI/AC composites can then be regenerated by carbothermal reduction process which can be an effective method to regenerate the synthesized nZVI/AC composites.en_US
dc.description.tableofcontents目錄 中文摘要 I Abstract II 目錄 II 表目錄 VI 圖目錄 VIII 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 三氯乙烯污染 4 2-1-1 三氯乙烯之物化特性與危害性 4 2-1-2 三氯乙烯污染狀況 6 2-2 土壤及地下水整治方法 11 2-2-1 物理化學復育處理 11 2-2-2 生物復育處理 15 2-3 活性碳 17 2-3-1 活性碳吸附行為 17 2-3-2 活性碳等溫吸附模式 19 2-4 零價鐵 22 2-4-1 零價鐵特性與反應機制 24 2-4-2 奈米級零價鐵 37 2-4-3 零價鐵複合材料 41 第三章 實驗材料與方法 43 3-1 實驗材料與設備 43 3-2 實驗流程 45 3-2-1 nZVI/AC複合材料製備 46 3-2-2 nZVI/AC降解三氯乙烯 49 3-2-3 nZVI/AC吸附三氯乙烯 51 3-2-4 nZVI/AC劑量對降解三氯乙烯影響 52 3-2-5 TCE降解副產物分析 52 3-2-6 nZVI/AC複合材料之再生 54 3-3 實驗分析方法 56 第四章 結果與討論 64 4-1 nZVI/AC複合材料特性分析 64 4-2 nZVI/AC複合材料降解三氯乙烯效率評估 85 4-2-1 nZVI/AC降解三氯乙烯 85 4-2-2 nZVI/AC反應後之特性分析 90 4-3 nZVI/AC複合材料吸附三氯乙烯 100 4-3-1 nZVI/AC吸附動力 100 4-3-2 nZVI/AC等溫吸附 101 4-4 nZVI/AC複合材料劑量對降解三氯乙烯之影響 103 4-5 nZVI/AC複合材料降解三氯乙烯副產物分析 108 4-6 nZVI/AC複合材料再生 113 4-6-1 再生之複合材料特性分析 113 4-6-2 再生之複合材料降解三氯乙烯 120 第五章 結論與建議 122 5-1 結論 122 5-2 建議 124 第六章 參考文獻 125 表目錄 表2-1 三氯乙烯物化特性 5 表2-2 三氯乙烯對人體危害性 6 表2-3 環保署公告受三氯乙烯污染之場址 10 表2-4 污染物與適用之填充材質 15 表2-5 活性碳孔徑大小、體積與比表面積 18 表2-6 物理性與化學性吸附差異 19 表2-7 ZVI降解TCE常見之副產物 33 表2-8 ZVI降解TCE之反應速率常數 38 表3-1 nZVI/AC 複合材料製備實驗參數 47 表3-2 nZVI/AC降解TCE實驗參數 50 表3-3 nZVI/AC吸附實驗參數 52 表3-4 nZVI/AC降解TCE實驗參數 53 表3-5 nZVI/AC再生實驗參數 55 表3-6 再生之nZVI/AC複合材料降解TCE實驗參數 55 表4-1 nZVI/AC複合材料BET與孔隙體積變化 80 表4-2 利用PEG製備ZVI或氧化鐵FTIR分析之官能基及吸收波數 83 表4-3 nZVI/AC複合材料之反應速率常數(kobs, TCE) 86 表4-4 nZVI/AC複合材料反應前後含鐵量 98 表4-5 Freundlich與Langmuir吸附模式參數 102 表4-6 不同劑量之nZACP700與TCE反應條件下,Cl-生成反應速率常數 107 圖目錄 圖2-1 各類應徵收化學物質繳交整治費比例圖 8 圖2-2 地下水污染場址各類污染項目比例 8 圖2-3 DNAPL於地表下的傳輸途徑 9 圖2-4 透水性反應牆示意圖 14 圖2-5 透水性反應牆型式 14 圖2-6 零價鐵結合生物系統降解硝酸鹽 16 圖2-7 活性碳孔隙結構圖 17 圖2-8 活性碳上常見之官能基 18 圖2-9 零價鐵實場應用操作方式 23 圖2-10 污染物與零價鐵接觸過程示意圖 25 圖2-11 零價鐵反應機制 26 圖2-12 零價鐵表面電子轉移途徑 27 圖2-13 ZVI降解TCE反應途徑 31 圖2-14 零價鐵核殼結構 37 圖2-15 PEG結構式 40 圖2-16 GAC/ZVI/Pd複合材料處理二氯聯苯示意圖 42 圖3-1 實驗設計流程圖 45 圖3-2 nZVI/AC複合材料製備反應器配置圖 48 圖3-3 nZVI/AC降解TCE反應器配置圖 51 圖3-4 高溫管狀爐鍛燒裝置圖 54 圖3-5 TCE之GC-FID層析圖譜範例 57 圖3-6 TCE檢量線範例 57 圖3-7 Cl-之IC層析圖譜範例 58 圖3-8 氯離子檢量線範例 58 圖4-1 活性碳之SEM/SEI影像 64 圖4-2 活性碳之EDS圖譜 65 圖4-3 nZVI之SEM/SEI影像 (a)50000倍及(b)100000倍 66 圖4-4 nZVI/AC複合材料之SEM/BEI影像250倍 67 圖4-5 nZVI/AC複合材料之SEM/BEI影像1500倍 68 圖4-6 nZVI/AC複合材料之SEM/SEI影像50000倍 70 圖4-7 nZVI/AC複合材料之SEM/BEI影像 70 圖4-8 nZAC105之EDS圖譜 71 圖4-9 nZAC700之EDS圖譜 72 圖4-10 nZACP105之EDS圖譜 73 圖4-11 nZACP700之EDS圖譜 74 圖4-12 nZVI之TEM影像 (a)100000倍及(b)400000倍 75 圖4-13 nZVI/AC複合材料之TEM影像25000倍 76 圖4-14 nZVI/AC複合材料之TEM影像100000倍 77 圖4-15 nZVI/AC複合材料之氮氣吸脫附曲線 78 圖4-16 等溫吸附類型分類 79 圖4-17 nZVI/AC複合材料孔隙直徑與體積之變化 80 圖4-18 nZVI/AC複合材料之XRD分析圖譜 81 圖4-19 nZVI/AC複合材料之FTIR官能基分析圖譜 84 圖4-20 nZVI/AC複合材料降解TCE反應過程中,TCE隨時間之變化 86 圖4-21 nZVI/AC複合材料降解TCE反應過程中,Cl-隨時間之變化,內插圖為Cl-(C/C0)與時間之變化關係 87 圖4-22 TCE吸附及脫氯程度之質量平衡 88 圖4-23 nZVI/AC複合材料降解TCE反應過程中,ORP隨時間之變化 89 圖4-24 nZVI/AC複合材料降解TCE反應過程中,pH隨時間之變化 89 圖4-25 nZVI/AC複合材料之SEM/BEI影像250倍 91 圖4-26 nZVI/AC複合材料之SEM/SEI影像 92 圖4-27 RnZAC105之EDS圖譜 93 圖4-28 RnZAC700之EDS圖譜 94 圖4-29 RnZACP105之EDS圖譜 95 圖4-30 RnZACP700之EDS圖譜 96 圖4-31 nZVI/AC複合材料反應後之XRD分析圖譜 97 圖4-32 nZVI/AC複合材料反應前後含鐵量質量平衡關係圖 99 圖4-33 TCE吸附動力曲線 100 圖4-34 TCE 之Freundlich等溫吸附曲線 101 圖4-35 TCE之 Langmuir等溫吸附曲線 102 圖4-36 不同劑量之nZACP700與TCE反應條件下,水溶相TCE隨時間之變化,內插圖為局部數據放大圖 103 圖4-37 不同劑量之nZACP700與TCE反應條件下,pH隨時間變化 104 圖4-38 不同劑量之nZACP700與TCE反應條件下,Cl-生成隨時間之變化 106 圖4-39 不同劑量之nZACP700與TCE反應條件下,TCE吸附及Cl-生成之脫氯程度質量平衡 107 圖4-40 TCE及部分降解副產物標準品定性GC/FID分析圖譜 109 圖4-41 nZACP700降解TCE,於不同反應時間條件下氣相GC/FID分析圖譜 110 圖4-42 nZACP700降解TCE,於不同反應時間條件下液相經P&T前處理之GC/FID分析圖譜 111 圖4-43 nZACP700降解TCE,於不同反應時間條件下固相經Methanol萃取之GC/FID分析圖譜 112 圖4-44 再生之複合材料SEM/BEI影像250倍 113 圖4-45 再生之複合材料SEM/BEI影像1500倍 114 圖4-46 再生之複合材料SEM影像 115 圖4-47 RnZAC700-RE500之EDS圖譜 116 圖4-48 RnZAC700-RE700之EDS圖譜 117 圖4-49 RnZAC700-RE1000之EDS圖譜 118 圖4-50 高溫再生之複合材料XRD分析圖譜 119 圖4-51 再生之複合材料與TCE反應過程中,TCE隨時間之變化,內插圖為ORP隨時間之變化 120 圖4-52 再生之複合材料反應過程中,pH隨時間變化 121zh_TW
dc.subjectGroundwater contaminationen_US
dc.subjectChlorinated solventen_US
dc.subjectZero valent ironen_US
dc.subjectPermeable reactive barrieren_US
dc.titleEvaluation of activated carbon supported nanoscale zero valent iron for treating trichloroethyleneen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.