Please use this identifier to cite or link to this item:
標題: 四乙烯戊胺改質矽材吸附二氧化碳之研究
Adsorption of CO2 via Tetraethylenepentamine modified silica material
作者: 郭室均
Kuo, Shin-Chun
關鍵字: CO2 capture;二氧化碳;Mesoporous Silica Particles;Zeolite;adsorption;Surface modification;Regeneration;表面改質;中孔洞矽材;Y型沸石;循環吸脫附
出版社: 環境工程學系所
引用: 吳榮宗,(1989),工業觸媒概論,國興出版社,新竹市 郝吉明、馬廣大,(1996),空氣污染控制工程,科技圖書股份有限公司,台北市 袁中新、洪崇軒,(2002) ”溫室氣體二氧化碳之常溫光催化還原技術研究”行政院環境保護署 顏秀慧,(1997) ”沸石對揮發性有機物吸附行為之研究”,博士論文,國立台灣大學環境工程研究所,台北市 潘守保,(1998) ”以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究”,碩士論文,國立交通大學環境工程研究所,新竹市 徐恆文,(2007) ”二氧化碳的捕獲與分離” 科學發展,第413期,PP.24-27 李文峰 ,(2002) ”以MEA溶液去除煙道氣中二氧化碳之研究” 碩士論文,國立成功大學環境工程研究所,台南市 莊家麟,(2003) “活性碳對苯、四氯化碳與氯仿之吸/脫附動力模式研究”,博士論文,國立台灣大學環境工程學研究所,台北市 許菁珊,(2004) ”沸石對於光電產業揮發性有機化合物之吸脫附研究”碩士論文,國立中山大學環境工程所,高雄市 吳佳樺, (2008) ”奈米及中孔氧化矽材料之合成、修飾、鑑定及其二氧化碳分離之應用” 碩士論文,中國文化大學材料科學與奈米科技研究所,台北市 陳文發,(2008) “改質奈米碳管及中孔洞矽材吸附二氧化碳之研究”,碩士論文,國立中興大學環境工程系,台中市。 Aaron, D., and Tsouris, C., (2005) “Separation of CO2 from Flue Gas: A Review.” Separation Science and Technology, Vol. 40, pp. 321-348 Atkins, P. W., (1990) “Solutions manual for physical chemistry”, Oxford University Press, Oxford, U.K Barrett, E.P., Joyner, L.G., and Halenda, P. P., (1951) “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms”, American Chemical Society, Vol. 73, pp. 373-880 Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., Mccullen, S.B., Higgins, J.B., and Schlenker, J.L., (1992) “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates.” Journal of American Chemical Society, Vol. 114, pp. 10834-10843 Bhatia, S., (1990) “Zeolite catalysis principles and application CRC press”, Florida. Blocki, S. W., (1993) “Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology”, Environmental Progress, Vol. 12, pp. 226-230. Brunauer, S., Deming, L.S., Deming, D.M., and Teller, E., (1940) “On a theory of the van der Waals adsorption of gases” , J. Am. Chem. Soc., Vol. 62, pp. 1723-1732. Chang, C. W., and Tontiwachwuthikul, P., (1996) “A Decision Support System for Solvent Selection of CO2 Separation Processes”, Energy Conversion, Vol. 37, pp. 941-946. Chatti, R., Bansiwal, A. K., Thote, J. A., Kumar, V., Jadhav, P., Lokhande, S. K., Biniwale, R. B., Labhsetwar, N. K., and Rayalu, S. S., (2009) “Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies.” Microporous and Mesoporous Materials, Vol. 121, pp. 84-89. Cooper, C. D., and Alley, F. C., (1996) “Air pollution control a design approach”, 2nd ed., Waveland Press, Inc., Illinois. Dean, J. A., (1992) “Lange’s Handbook of Chemistry, 14th Edition”, McGraw-Hill, Inc., New York. Department of the prime Minister and Cabinet, Australia, 2004, Securing Australia’s energy future (energy white paper) Available at publications/energy_future/ Ebbing, D. D., and Ebbing, S. D., (1999) “General Chemistry”, 6th Edition, Houghton Mifflin, Boston Feng, B., An, H., and Tan, E., (2007) “Screening of CO2 adsorbing materials for zero emission power generation systems”, Energy & Fuels, Vol.21, pp.426-434. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., and Srivastava, R.D., (2008) ” Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program”, International journal of greenhouse gas control, Vol.2, pp.9-20 Frachi, R. S., Harlick, Peter. J. E., and Sayai. A., (2005) “Applications of Pore-Expanded Mesoporous Silica. 2. Development of a Hig-Capacity, Water-Tolerant Adsorbent for CO2”, Industrial &Engineering Chermistry Research, Vol. 44, 8007-8023 Freddy, K., Wolfgang, S., and Ferdi, S., (2003) “Calcination behavior of different surfactant-templated mesostructured silica materials”, Microporous and Mesoporous Materials. Vol. 65, pp. 1-29 Flagan, R. C., and John, H. S., (1988) “Fundamentals of air pollution engineering”, Prentice-Hall, New Jersey Fonseca, R. L., Aranzabal, A., and Steltenpohl, P., (2000) “Performance of Zeolites and Product Selectivity in the Gas-Phase Oxidation of 1,2-Dichloroethane”, Catalysis Today, Vol. 62, pp. 367-377. Gao, W., Butler, D., and Tomasko, D.L., (2004) “High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms” , Langmuir, Vol. 20, pp. 8083-8089. Gollakota, S. V., and Chriswell, C. D., (1988) “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal form Combustion Gases”, Industrial &Engineering Chermistry Research, Vol. 27, pp. 139-143 Gottari, G., Sand, L.B., and Mumpton, F.A., (1987) “Mineralogy and Crystal Chemistry of Zeolite, in Natural Zeolites:Occurrence, Properties”, Pergamon Press Inc., Elmoord, N.Y.,PP. 31-43 Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, R. W., Khatri, R., Chuang, S. S. C., and Chuang, F. T., (2005) “Improved immobilized carbon dioxide capture sorbents”, Fuel Processing Technology, Vol. 86, pp. 1449-1455. Gregg, S.J., and Sing, K.S.W., (1982) “Adsorption, Surface Area and Porosity”, 2nd ed., Academic Press, London. Gupta, A., Gaur, V., and Verma, N., (2004) “Breakthrough Analysis for Adsorption of Sulfur-Dioxide Over Zeolite”, Chemical Engineering and Processing, Vol. 43, pp. 9-22 Harlick, Peter, J. E., and Sayari, A., (2006) “Applications of Pore-Expanded Mesoporous Silicas. 3. Triamine Silane Grafting for Enhanced CO2 Adsorption”, Industrial & Engineering Chermistry Research, Vol. 45, pp. 3248-3255 Hicks, J. C., Drese, J. H.,Fauth, D. J., Gary, M. L., Qi, G., and Jones, C. W., (2008) “Designing adsorbents for CO2 Capture from Flue Gas-Hyperbranched Aminosilicas Capable of Capture CO2 Reversibly”, J. AM. CHEM. SOC, Vol. 130, pp.2902-2903. Hiyoshi, N ., Yogo, K., and Yashima, T., (2005) “Adsorption characteristics of carbon dioxide on organically functionalized SBA-15”, Microporous and Mesoporous Materials, Vol. 84, pp.357-365 Hongyou, F., Frank, V. S., Yunfeng, Lu., and Brinker, C. J., (2003) “Multiphased assembly of nanoporous silica particles”, Journal of Non-Crystalline Solids, Vol. 285, pp. 71-78. Huang, H. Y., Yang, R. T., Chinn, D., and Munson, C. L., (2003) “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas”, Industrial & Engineering Chermistry Research, Vol. 42, pp. 2427-2433 Hung, C., and Bai, H., (2009) ”Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study”, Separation and Purification Technology, Vol. 64, pp. 265–272 IPCC (2005) “Special Report on Carbon dioxide Capture and Storage”, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost). IUPAC(1972) ”Manual of symbols and terminology for physicochemical quantities and units” , Butterworths, Londen Jaroniec, C.P., Kruk, M., Jaroniec, M., and Sayari, A., (1998) “Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes”, Journal of Physical Chemistry B, Vol. 102, pp. 5503-5510. Kim, Y.S., and Yang, S.M., (2000) “Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents”, Separation and Purification Technology, Vol. 21, pp.101-109 Kim, S.N., Son, W. J., Choi J. S., and Ahn, Wha., (2008) “CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactantmediated synthesis”, Microporous and Mesoporous Materials, Vol. 115, pp.497-503 Knowles, G. P., Delaney, S. W., and Chaffee, A. L., (2006) “Diethylene- triamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents”, Industrial & Engineering Chermistry Research, Vol. 45, pp. 2626-2633 Knowles, G. P., Graham, J. V., Delaney, S. W., and Chaffee, A. L., (2005) “Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents”, Fuel Processing Technology, Vol. 86, pp. 1435-1448 Lee, J.S., Kim, J.H., Kim, J.T., Suh, J.K., Lee, J.M., and Lee, C.H., (2002) “Adsorption Equilibria of CO2 on Zeolite 13X and Zeolite X/Activated Carbon Composite”, J. Chem. Eng., Vol. 47, pp. 1237-1242. Li, P., and Tezel, F. H., (2007) ”Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite”, Microporous and Mesoporous Materials, Vol. 98, pp. 94-101 Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A., (2005) “Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations”, Carbon, Vol. 43, pp. 1758 Liu, X., Li, J., Zhou, L., Huang, D., and Zhou, Y., (2005) “Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve”, Chemical Physics Letters, Vol. 415, pp. 198-201 Lu, Y., Fan, H., Stump, A., Ward, T.L., Rieker, T., and Brinker, C.J., (1999) “Evaporation-Induced Self-Assembly: Nanostructures Made Easy”, Nature, Vol. 398, pp. 223-226 Mangesh, T.B., Shailendra, B.R., Timothy, L.W., and Abhaya, K.D., (2003) “Hexagonal mesostructure in powders produced by evaporation-induced self-assembly of aerosols from aqueous tetraethoxysilane solutions”, Langmuir, Vol. 13, pp. 256-264 Ming, B. O., Lin, B. S., Yi, C., Zhu, J. W., Ying, W., Qing, Y., and Jian, H. Z., (2008) “Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group”, Microporous and Mesoporous Materials, Vol. 114, pp.74-81 Neyestanaki, A. K., Kumar, N., and Lindfors, L.E., (1995) “Catalytic Combustion of Propane Over Pt and Cu Modified ZSM-5 Zeolite Catalysts”, Fuel, Vol. 74, pp. 690-695 Rangwala, H. A., (1996) “Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors”, Journal of Membrane Science, Vol. 112, pp. 229-240 Ronald, J. G., David, A. H., Colin, B. N., and Edward, A. R., (1986) “Chemistry”, Allyn and Bacon, New York Rouquerol, F., Rouquerol, J., and Sing, K., (1999) “Adsorption by powders & porous solids”, Academic Press Ruthven, D. M., (1984) “Principles of adsorption and adsorption process”, Wiley, New York, USA. Salden, A., and Eigenberger, G., (2001) “Multifunctional Adsorber/ReactorConcept for Waste-Air Purification”, Chemical Engineering Science, Vol. 56, pp. 1605-1611 Shui, H. Y., Fu, T. J., and Jiun, H. T., (1997) “ adsorption of methyl-ethyl ketone vapor onto zeolite”, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, Vol. 32, pp. 2087-2100 Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., (1985) “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., Vol. 57, pp. 603-619 Siriwardane, R. V., Shen, M. S., and Fisher, E.P., (2005) “Adsorption of CO2 on Zeolites at Moderate Temperatures ”, Energy & Fuels., Vol. 19, pp. 1153-1159 Son, W-J., Choi, J.S., and Ahn, W.S., (2008) “Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials”, Microporous and Mesoporous Materials, Vol. 113, pp. 31-40. Suzuki, M., (1990) “Adsorption Engineering”, Kodansha Ltd., Tokyo. Swanson, M. E., Greene, H. L., and Qutubuddin, S., (2004) “Reactive Sorption of Chlorinated VOCs on ZSM-5 Zeolites at Ambient and Elevated Temperatures”, Applied Catalysis B: Enviromental, Vol. 52, pp. 91-108 Takafumi, S., Manabu, S., and Kikno, O., (1995) “Evaluation of sintering ofnanometer-sized titania using aerosol method”, Aerosol Sci. Technol., Vol. 23, pp. 183-200 Triebe, R.W., Tezel, F. H., and Khulbe, K. C., (1996) “Adsorption of Methane, Ethane and Ethylene on Molecular Sieve Zeolites”, Gas Separation & Purification, Vol. 10, pp. 81-84 Wang, L., Ma, L., Wang, A., and Zhang, T., (2007) “CO2 Adsorption on SBA-15 Modified by Aminosilane”, Chinese Journal of Catalysis, Vol. 28, pp. 805–810 Ward, W.J., (1984) “Molecular sieve catalysts, in applied industrial catalysis”, Vol. 3, Academic press, New York. Wei, J., Shi, J., Pan, H., Zhao, W., Ye, Q., and Shi, Y., (2008) “Adsorption of carbon dioxide on organically functionalized SBA-16” , Microporous and Mesoporous Materials, Vol. 116, pp. 394-399 Xu, X., Song, C., Andresen, J. M., Miller, B. G., and Scaroni, A. W., (2003) “Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41”, Microporous and Mesoporous Materials, Vol. 62, pp. 29-45 Xu, X., Song, C., Miller, B. G., and Scaroni, A. W., (2005) “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent”, Fuel Processing Technology, Vol. 86, pp. 1457-1472 Yue, M. B., Chun Y., Cao, Y., Dong X., and Zhu, J. H., (2006) “CO2 Capture by As-Prepared SBA-15 wuth an Occluded Organic Template”, Adv. Funct. Mater. Vol. 16, pp. 1717–1722 Yue, M. B., Sun, L. B., Cao, Y., Wang, Y., Wang, Z. J., and Zhu, J. H., (2008) “Efficient CO2 Capturer Derived from As-Synthesized MCM-41 Modified with Amine”, Chem. Eur. J., Vol. 14, pp. 3442- 3451 Zheng, F., Tran, D. N., Busche, B. J., Fryxell, G. E., Addleman, R. S., Zemanian, T. S., and Aardahl, C. L., (2005) “Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent”, Industrial & Engineering Chemistry Research, Vol. 44, pp. 3099-3105 Zelenak, V., Halamova, D., Gaberova, L., Bloch, E., and Llewellyn, P., (2008) “Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties”, Microporous and Mesoporous Materials, Vol. 16, pp. 358-364
本研究以中孔洞矽材(Mesoporous Spherical-Silica Particles,簡稱 MSPs)及Si/Al為60之Y型沸石(簡稱Y60)為吸附材,模擬煙道除硫系統(flue gas desulfurization, FGD)尾氣中二氧化碳(CO2)進行吸附效率測試及評估實場應用之可行性。於研究中利用多胺基藥劑-四乙烯戊胺(Tetraethylenepentamine, TEPA) 進行吸附劑表面化學改質,以提升CO2吸附容量 。研究結果顯示,MSPs及Y60經TEPA改質後,在60℃環境下,MSPs吸附量由7.03提昇至87.05 mg/g經,Y60吸附量由15.28增加至112.74mg/g。由熱力學得知,MSP(TEPA)與Y60(TEPA)在30-60℃間吸附熱分別為57.61及36.74 kJ/mole,放熱反應以化學性吸附為主。在循環吸附方面,熱脫附試程顯示,MSP(TEPA)及Y60(TEPA),經過20次反覆吸脫附後,對CO2的吸附指標(adsorption index)皆能維持90%,吸附量仍相當高。濕度影響下,MSP(TEPA)、 Y60(TEPA)隨著溼度增加其吸附量皆有提升趨勢,溼度0%時吸附量為87.05 mg/g、112.74mg/g,當溼度增加至7%時,吸附量提升至206.34 mg/g、262.49 mg/g。MSP、Y60經過TEPA表面處理後,表面含胺官能增加,對CO2吸附效果較傳統吸附劑有較高的吸附容量,具有非常高之開發潛力。

This project employed Mesoporous Silica Particles, MSPs and Y-type zeolite as adsorbents for CO2 capture in post-flue gas desulfurization. The results showed that the optimal adsorbents were Tetraethylenepentamine, TEPA modified MSPs and zeolite with a Si/Al ratio of 60 (abbreviated as Y60). Hence, the experimental maximum adsorption capacity (qe) of MSPs and MSP(TEPA) were 7.03 and 87.05 mg/g, respectively, at 20oC with 15% of CO2 inlet. Under the same inlet concentration at 60oC, the qe of Y60 and Y60(TEPA) were 15.28and 112.74 mg/g, respectively. The qe of MSP(TEPA) and Y60(TEPA) was greater than many types of modified silica adsorbents documented in the literature. These results are favorable in their use as an adsorbent for CO2 capture. The thermodynamic analysis gave 57.61 and 36.74 kJ/mole isosteric heat of adsorption, which is typical for chemcial adsorption. From an energy efficient standpoint, the cyclic CO2 adsorption on MSP(TEPA) and Y60(TEPA) showed that the adsorbed CO2 could be effectively desorbed via thermal treatment. The qe of MSP(TEPA) and Y60(TEPA) were increased with increasing of relative humidity, range from 0-7%,from 87.05、112.74 mg/g to 206.34、262.49 mg/g,respectively. It has been tested for 20 cycles of adsorption and regeneration with little reduction incapacity, suggesting that the MSP(TEPA) and Y60(TEPA) can be used in the prolonged adsorption/desorption operation. This project provides useful information with respect to potential adsorbents and the best operating conditions as design criteria for a full-scale CO2 adsorber in the field.
其他識別: U0005-1607200911423600
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.