Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5690
標題: 探討紫色不含硫光合菌Rhodopseudomonas palustri WP3-5產氫及PHB累積之競爭關係
An investigation of competition between hydrogen production and PHB (poly-β-hydroxybutyrate) accumulation by Rhodopseudomonas palustris WP3-5
作者: 劉軒孜
Liou, Syuan-Zih
關鍵字: Rhodopseudomonas palustris;紫色不含硫光合菌;PHB;hydrogen;PHB;氫氣
出版社: 環境工程學系所
引用: 王炳南。2005。厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。碩士論文。國立中興大學。台中。 尼爾森。2007。為了我們的孩子而寫的求生手冊。天下遠見出版股份有限公司。台灣。 史慧萍。2007。可同時脫消除磷菌種之篩選及其除磷特性之研究。博士論文。國立中興大學。台中。 曲新生、陳發林、呂錫民。2007。產氫與儲氫技術。五南圖書出版股份有限公司。台北。 何宜靜。2006。利用Pseudomonas oleovorans生產含官能基之PHA及其結構與物性探討。碩士論文。國立台灣大學。台北。 林鈺傑。2008。紫色不含硫光合菌結合不同生物系統產生氫氣之研究。碩士論文。國立中興大學。台中。 洪國展。2004。光合產氫之程序組合及應用。碩士論文。國立中興大學。台中。 涂良君。1999。產氫光合作用細菌之分離與篩選。碩士論文。國立中興大學。台中。 郁揆民。2003。紫色不含硫光合作用細菌產氫限制因子之研究。碩士論文。國立中興大學。台中。 馮筠書。菌株Mesorhizobium sp. F28腈水合酶之純化及特性與應用。博士論文。國立中興大學。台中。 詹姆斯.哈維.康斯勒。2007。沒有石油的明天:能源枯竭的全球化衝擊。商周出版。台灣。 蔡佳玲。2007。紫色不含硫光合菌利用高溫好氧污泥消化出流水產生氫氣之研究。碩士論文。國立中興大學。台中。 蕭景庭。2000。產氫光合作用細菌之生理特性研究。碩士論文。國立中興大學。台中。 張嘉修。2009。生質氫能。科學發展月刊,433期,32-35頁。 褚盧生。2009。洛杉磯市長誓言打造全美最環保乾淨城市。中央社。4月15日。 蔡信行。2006。替代能源之回顧與展望(上)。石油季刊,42卷1期,33-48頁。 蔡信行。2006。替代能源之回顧與展望(下)。石油季刊,42卷2期,51-69頁。 工業技術研究院能源與環境研究所 Web site www.itri.org.tw/chi/eel/ 行政院國家永續發展委員會,全國能源會議,2009。 Web site sta.epa.gov.tw/nsdn/index.asp. 經濟部能源局 web site www.moeaec.gov.tw. AFP. 2008. Boeing Flies Hydrogen Powered Plane. April 3. AFP. 2009. UN sounds warning after Antarctica ice shelf rips. April 7. Akkerman Ida, Marcel Janssen, Jorge Rocha and René H. Wijffels. 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy 27: 1195-1208. Aldor, Ilana S, and Jay D Keasling. 2003. Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. Current Opinion in Biotechnology 14, no. 5: 475-483. Anderson, A. J., and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiology and Molecular Biology Reviews 54, no. 4: 450-472. Anonymous. 2007. Worldwide look at reserves and production. Oil and Gas Journal 105, no. 48: 24-25. Baptist JN. US Patent, 3, 044, 942. Barbosa, Maria J., Jorge M. S. Rocha, Johannes Tramper and René H. Wijffels. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnology 85, no. 1: 25-33. Basar Uyar, Inci Eroglu, Meral Yücel, Ufuk Gündüz, and Lemi Türker. 2007. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy 32, no. 18: 4670-4677. Batstone, D. J., and Iwa Task Group. 2002. Anaerobic digestion model no. 1. London: IWA Publishing. Blankenship, Robert E., M. T. Madigan, C. E. Bauer. 1995. Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers. Bolton, James R. 1996. Solar photoproduction of hydrogen: A review. Solar Energy 57, no. 1: 37-50. Brandl, Helmut, Richard A. Gross, Robert W. Lenz, Ramona Lloyd, and R. Clinton Fuller. 1991. The accumulation of poly(3-hydroxyalkanoates) in Rhodobacter sphaeroides. Archives of Microbiology 155, no. 4: 337-340. British Petroleum. 2008. BP Statistical Review of World Energy 2008. London, UK: British Petroleum. British Petroleum. 2009. 100 years of operating at the frontiers. London, UK: British Petroleum. Byrom, D. 1992. Biomaterials: Novel Materials from Biological Sources. Grove''s Dictionaries. Choi, Jong-il, Sang Yup Lee, and Kyuboem Han. 1998. Cloning of the Alcaligenes latus Polyhydroxyalkanoate Biosynthesis Genes and Use of These Genes for Enhanced Production of Poly(3-hydroxybutyrate) in Escherichia coli. Applied and Environmental Microbiology 64, no. 12: 4897–4903. Chinwetkitvanich, S., C.W. Randall, and T. Panswad. 2004. Effects of phosphorus limitation and temperature on PHA production in activated sludge. Water Science & Technology 50, no. 8: 135-143. Das, Debabrata, and T. Nejat Veziroğlu. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26, no. 1: 13-28. Das, Debabrata, and T. Nejat Veziroglu. 2008. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33, no. 21: 6046-6057. Dawes, E. A., and P. J. Senior. 1973. The role and regulation of energy reserve polymers in micro-organisms. Advances in Microbial Physiology 10: 135-266. de Smet, M. J., G. Eggink, B. Witholt, J. Kingma, and H. Wynberg. 1983. Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. Journal of Bacteriology 154, no. 2: 870-878. Dias, João M. L., Paulo C. Lemos, Luísa S. Serafim, Cristina Oliveira, Marta Eiroa, Maria G. E. Albuquerque, Ana M. Ramos, Rui Oliveira, and Maria A. M. Reis. 2006. Recent Advances in Polyhydroxyalkanoate Production by Mixed Aerobic Cultures: From the Substrate to the Final Product. Macromolecular Bioscience 6, no. 11: 885-906. Doi, Y. 1990. Microbial polyesters. New York: VCH Publishers. Dorian, James P., Herman T. Franssen, and Dale R. Simbeck MD. 2006. Global challenges in energy. Energy Policy 34, no. 15: 1984-1991. Doudoroff, M., and R. Y. Stanier. 1959. Role of Poly-β-Hydroxybutyric Acid in the Assimilation of Organic Carbon by Bacteria. Nature 183, no. 4673: 1440-1442. DuBois, Michel., K. A. Gilles, J. K. Hamilton, P. A. Rebers and Fred. Smith. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 28, no. 3: 350-356. EIA. 2008. International Energy Outlook 2008. U.S. Energy Information Adminstration. EMSD, Electrical and Mechanical Services Department. Web site www.energyland.emsd.gov.hk/chi/index.htm. Fascetti, E., E. D''Addario, O. Todini, and A. Robertiello. 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy 23: 753-760. Fedorov, A. S., A. A. Tsygankov, K. K. Rao, and D. O. Hall. 1998. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnology Letters 20, no. 11: 1007-1009. Filhol, Jean-Sébastien, and Matthew Neurock. 2006. Elucidation of the electrochemical activation of water over Pd by first principles. Angewandte Chemie 45, no. 3: 402-406. Findlay, Robert H., and David C. White. 1983. Polymericβ-Hydroxyalkanoates from Environmental Samples and Bacillus megaterium. Applied and Environmental Microbiology 45, no. 1: 71-78. Forsyth, W. G. C., A. C. Hayward, and J. B. Roberts. 1958. Occurrence of Poly-β-Hydroxybutyric Acid in Aerobic Gram-Negative Bacteria. Nature 182, no. 4638: 800-801. Franchi, Elisabetta, Claudio Tosi, Giuseppe Scolla, Gino Penna, Francesco Rodriguez, and Paola Pedroni. 2004. Metabolically Engineered Rhodobacter sphaeroides RV strains for Improved Biohydrogen Photoproduction Combined with Disposal of Food Wastes. Marine Biotechnology 6, no. 6: 552-565. Fuller, R. 2004. Polyesters and Photosynthetic Bacteria. in Anoxygenic Photosynthetic Bacteria, 1245-1256. Gasslmaier, Bernd, Christoph M. Krell, Dieter Seebach, and Eggehard Holler. 2000. Synthetic substrates and inhibitors of β-poly(L-malate)-hydrolase (polymalatase). European Journal of Biochemistry 267, no. 16: 5101-5105. Gross, Richard A., and Bhanu Kalra. 2002. Biodegradable Polymers for the Environment. Science 297, no. 5582: 803-807. Hallenbeck, P. C. 1983. Nitrogenase reduction by electron carriers: influence of redox potential on activity and the ATP/2e- ratio. Archives of Biochemistry and Biophysics 220, no. 2: 657-660. Hallenbeck, Patrick C., and John R. Benemann. 2002. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 27, no. 11-12: 1185-1193. Hillmer, P, and H. Gest. 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. Journal of Bacteriology 129, no. 2: 724-731. Hinrichsen, G. 1995. Plastics from microbes: Microbial synthesis of polymers and polymer precursors. Edited by David P. Mobfey, Hanser Publishers. Holmes, Paul A., Stephen H. Collins, Leonard F. Wright. 1988. 3-hydroxybutyrate polymers. United States Patent 52: 459. Hustede, Eilert, Alexander Steinbüchel, and Hans G. Schlegel. 1993. Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Applied Microbiology and Biotechnology 39, no. 1: 87-93. IPCC Core Writing Team, Pachauri, R.K. and Reisinger, A. 2007. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland. IPCC. Khanna, Shilpi, and Ashok K. Srivastava. 2005. A Simple Structured Mathematical Model for Biopolymer (PHB) Production. Biotechnology Progress 21, no. 3: 830-838. Khaselev, Oscar, and John A. Turner. 1998. A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 280, no. 5362: 425-427. Khatipov, Emir, Masato Miyake, Jun Miyake, and Yasuo Asada. 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiology Letters 162, no. 1: 39-45. Kim, Mi-Sun, Jin-Sook Baek, and Jeong K. Lee. 2006. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. International Journal of Hydrogen Energy 31, no. 1: 121-127. Kunstler, James Howard. 2005. The Long Emergency: Surviving the Converging Catastrophes of the Twenty-first Century. Paperback. Lageveen, Roland G., Gjalt W. Huisman, Hans Preusting, Peter Ketelaar, Gerrit Eggink, and Bernard Witholt. 1988. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Applied and Environmental Microbiology 54, no. 12: 2924-2932. Lee, Sang Yup. 1996. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in Biotechnology 14, no. 11: 431-438. Lemoigne, M. 1926. Produit de déshydratation et de polymérisation de l''acide β-oxybutyrique. Bulletin de la Sociétés Chimie Biologoque 8:770-782. Li, Ru Ying, and Herbert H.P. Fang. 2008. Hydrogen production characteristics of photoheterotrophic Rubrivivax gelatinosus L31. International Journal of Hydrogen Energy 33, no. 3: 974-980. Luengo, José M., Belén García, Angel Sandoval, Germán Naharro, and Elías R. Olivera. 2003. Bioplastics from microorganisms. Current Opinion in Microbiology 6, no. 3: 251-260. Lynas, Mark. 2008. Six Degrees: Our Future on a Hotter Planet. National Geographic. Macrae, R. M., and J. F. Wilkinson. 1958. Poly-β-hyroxybutyrate Metabolism in Washed Suspensions of Bacillus cereus and Bacillus megaterium. Journal of general microbiology 19, no. 1: 210-222. Madigan, Michael T., John M. Martinko, Paul V. Dunlap, and David P. Clark. 2009. Brock Biology of Microorganisms, 12/E. U.S: Benjamin Cummings. Madison, Lara L., and Gjalt W. Huisman. 1999. Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews 63, no. 1: 21–53. Maria J. Barbosa, Jorge M. S. Rocha, Johannes Tramper, and René H. Wijffels. 2001. Acetate as a carbon source for hydrogen production by photosynthetic bacteria. Journal of Biotechnology 85, no. 1: 25-33. Meyer A. 1903. Praktikum der botanischen bakterienkunde. Gustav Fischer, Jena. Meyer, J., B. C. Kelley, and P. M. Vignais. 1978. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. Journal of Bacteriology 136, no. 1: 201-208. Nair, Lakshmi S., and Cato T. Laurencin. 2007. Biodegradable polymers as biomaterials. Progress in Polymer Scien,no. 32: 762-798. Nandi, R., and S. Sengupta. 1998. Microbial production of hydrogen: an overview. Critical Reviews in Microbiology 24, no. 1: 61-84. Nielsen, Ron. 2005. The Little Green Handbook: A Guide to Critical Global Trends. Australian: Scribe Publications. Penner, S.S. 2006. Steps toward the hydrogen economy. Energy 31, no. 1: 33-43. Peoples, O. P., and A. J. Sinskey. 1989. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). Journal of Biological Chemistry 264, no. 26: 15298-15303. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov., aring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Internation Journal of Systematic Bacteriogyl 28, no.2: 283-288. Poirier, Yves, Douglas E. Dennis, Karen Klomparens, and Chris Somerville. 1992. Polyhydroxybutyrate, a Biodegradable Thermoplastic, Produced in Transgenic Plants. Science 256, no. 5056: 520-523. Porwal, Shalini, Tarika Kumar, Sadhana Lal, Asha Rani, Sushil Kumar, Simrita Cheema, Hemant J Purohit, Rakesh Sharma, Sanjay Kumar Singh Patel, and Vipin Chandra Kalia. 2008. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresource Technology 99, no. 13: 5444-5451. Prince, Roger C., and Haroon S. Kheshgi. 2005. The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Critical Reviews in Microbiology 31, no. 1: 19-31. Rehm B. H. A., and Steinbuchel A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. International Journal of Biological Macromolecules 25: 3-19. Sasikala, K., Ch.V. Ramana, and P. Raghuveer Rao. 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 16, no. 9: 597-601. Sasikala, K., Ch. V. Ramana, and P. Raghuveer Rao. 1995. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy 20, no. 2: 123-126. Sasikala, K., Ch. V. Ramana, P. Raghuveer Rao, and M. Subrahmanyam. 1990. Photoproduction of hydrogen, nitrogenase and hydrogenase activities of free and immobilized whole cells of Rhodobacter sphaeroides O.U. 001. FEMS Microbiology Letters 72, no. 1-2: 23-28. Satoh H, Ramey W, Koch F, Oldham W, Mino T and Matsuo T. 1996. Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage. Water Science and Technology 34, no. 1-2: 9–16 Schubert, P., A. Steinbuchel, and H. G. Schlegel. 1988. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. Journal of Bacteriology 170, no. 12: 5837-5847. Slater, S. C., W. H. Voige, and D. E. Dennis. 1988. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. Journal of Bacteriology 170, no. 10: 4431-4436. Stapp, C. 1924. Über die reserveinhaltstoffe und den schleim von Azotobacter chroococcum. Zentbl Bakteriol II 61, 276-292. Steinbüchel, Alexander. 1991. Polyhydroxyalkanoic acids. In: Byrom D, editor. Biomaterials. Basingstoke:MacMillan. Steinbüchel, Alexander. 2001. Perspectives for Biotechnological Production and Utilization of Biopolymers: Metabolic Engineering of Polyhydroxyalkanoate Biosynthesis Pathways as a Successful Example. Macromolecular Bioscience 1, no. 1: 1-24. Steinbüchel,Alexander, and Lütke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal 16, no. 2: 81-96. Steinbüchel, Alexander, and Tina Lüke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochemical Engineering Journal 16, no. 2: 81-9 Stevens, P., Vos C. Vertoghhen,P., and Ley, J. D. 1984. The effect of temperature and light Intensity on hydrogen gas production by different Rhodopseudomonas Capsulate strains. Biotechnology Letters 6, no.5: 277-282. Sudesh, K., H. Abe, and Y. Doi. 2000. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science 25, no. 10: 1503-1555. The World Energy Council. Web site www.worldenergy.org. Turner, John A. 2004. Sustainable Hydrogen Production. Science 305, no. 5686: 972-974. Verlinden, R.A.J., D.J. Hill, M.A. Kenward, C.D. Williams, and I. Radecka. 2007. Bacterial synthesis of biodegradable polyhydroxyalkanoates. Journal of Applied Microbiology 102, no. 6: 1437-1449. Vincenzini, M. , R. Materassi, M. R. Tredici, and G. Florenzano. 1982. Hydrogen production by immobilized cells. I - Light dependent dissimilation of organic substances by Rhodopseudomonas palustris. International Journal of Hydrogen Energy 7: 231-236. Wallen, L. L., and W. K. Rohwedder. 1974. Poly-β-hydroxyalkanoate from activated sludge. Environmental Science and Technology 8:576-579. Westermann, Peter, Betina Jørgensen, Lene Lange, Birgitte K. Ahring, and Claus H. Christensen. 2007. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery. International Journal of Hydrogen Energy 32, no. 17: 4135-4141. Williamson, D. H., and J. F. Wilkinson. 1958. The isolation and estimation of the poly-β-hydroxybutyrate inclusions of Bacillus species. Journal of General Microbiology 19:198-209. Winkler, Martin, Anja Hemschemeier, Cecilia Gotor, Anastasios Melis, and Thomas Happe. 2002. [Fe]-hydrogenases in green algae: photo-fermentation and hydrogen evolution under sulfur deprivation. International Journal of Hydrogen Energy 27, no. 11-12: 1431-1439. Yergin, Daniel. 1991. The Prize: The epic quest for oil, money and power. New York : Simon and Schuster. Yiğit, D. 1991. The Prize: The epic quest for oil, money and power. United States: New York, NY (United States); Simon and Schuster. Zürrer, Hans, and Reinhard Bachofen. 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass 2, no. 3: 165-174.
摘要: 
氫氣是一種乾淨且具有高效能的燃料,燃燒不產生二氧化碳只會產生水。各式不同的產氫技術中,生物產氫是特別值得注意的技術,利用微生物分解有機廢水且可大量生產氫氣。微生物產氫主要可分為厭氧醱酵產氫與光合產氫兩大部分,其中光合產氫又可以分為光合自營產氫與光合異營產氫,利用光合異營中的紫色不含硫光合菌進行產氫是目前可行的方法之一,具有高產氫能力且不會有氧氣抑制的問題,利用光作為能源並消耗有機酸產生氫氣,同時達到淨水與能源回收的目的。大多數微生物於不利生長的環境中會合成累積PHB於細胞內,且細胞生長、累積PHB與產氫的過程中均會使用電子供給者進行反應。
本研究利用紫色不含硫光合菌Rhodopseudomonas palustris WP3-5產生氫氣,以批次實驗的方式改變不同培養條件,不同初始乙酸濃度、基質種類與pH分別探討其氫氣累積量與PHB的變化情形。
在不同乙酸濃度的批次實驗中,初始乙酸濃度分別為3.0 mM、7.8 mM與13.3 mM,最終氫氣產量分別為74.0 mL、112.0 mL與162.6 mL,氫氣累積量會隨著基質濃度增加而增加,PHB於細胞內之最大累積量均約佔細胞乾重的10%左右。
在不同基質的批次實驗中,使用五種有機酸 (乙酸、丙酸、丁酸、蘋果酸與乳酸) 及二種醣類 (葡萄糖與乳糖) 作為基質進行討論,產氫最佳產氫基質為丁酸,最終氫氣累積量為201.0 mL,最佳H2 yield基質也是丁酸 (1.10 mole H2/mole butyrate),最不易利用累積PHB之基質為蘋果酸及乳酸。
在不同pH的批次實驗中發現,以乙酸作為電子供給者之培養pH為6時細胞生長情形最好,隨著pH值升高最終細胞濃度會降低,但菌株WP3-5培養環境之pH只要低於5或是高於9即不再生長,最佳產氫pH為8,最大氫氣累積量為84.3 mL,但最佳H2 yield之pH則是6.8 (1.10 mole H2/mole acetate),PHB於pH為6.8與8.0的實驗組別有最大的細胞累積量。以蘋果酸作為基質的批次實驗中,於pH為6.8的條件下相對於pH為6與8的組別有較佳的氫氣產量 (111.0 mL),最佳H2 yield基質也是pH為6.8的組別,實驗過程中PHB的累積情形不顯著。
0 - 24小時為菌株WP3-5之對數生長期,亦為胞內累積PHB的時期,利用乙酸作為電子供給者,於24小時會於細胞內累積佔細胞乾重10%左右的PHB,HPR為186.6 mL/L-culture/day,而較不易累積PHB的蘋果酸於24小時細胞體內未有PHB被發現,HPR為241.1 mL/L-culture/day,由此可知氫氣累積量會因胞內累積PHB而降低。

Hydrogen is a clean and highly efficient fuel that produces water instead of CO2 after combustion comparing with fossil fuel. Among various H2 production technologies, the biological approach as a sustainable and environmental friendly method has received much attention since several waste materials can be used for hydrogen production. The microorganisms with the ability of hydrogen production can be divided into anaerobic fermentation and photosynthetic bacteria. Purple non-sulfur bacteria as one kind of photosynthetic bacteria, can use sunlight as energy source and volatile fatty acids (VFAs) as electron donor to produce hydrogen at high production rate without oxygen inhibition problem. Moreover, they also contain the ability of accumulating poly-hydroxybutyrate (PHB) under unbalanced growth, which is similar to biohydrogen production. This may cause the competition of reduced power between two mechanisms. For better hydrogen or PHB yield control, to clarify the relationship between PHB accumulation and hydrogen production is an important issue. Therefore, the aim of this research was mainly to explore their correlation under different incubation conditions using a series of batch experiments. The applied strain was Rhodopseudomonas palustris WP3-5, and the investigated factors included initial substrate concentration, pH and substrate sorts.
When the initial acetate concentrations were 3.0 mM, 7.8 mM and 13.3 mM, the final hydrogen production volumes were 74.0 mL, 112.0 mL and 162.6 mL, respectively. The hydrogen accumulative volume increased as the initial acetate concentration increased. However, PHB content in the cell did not have an obvious variation even if the initial substrate concentration was different. The maximum PHB content in each substrate condition was 10%.
In the results of various substrates effect, butyrate was the best electron donor for hydrogen production. The cumulative volume was 201.0 mL, and H2 yield was 1.10 mole H2/mole butyrate. Malate and lactate were not the suitable substrates for PHB accumulation, and the highest content were 0.00% and 3.85% respectively.
The optimum pH for growth was 6 when acetate as the substrate. High pH was not suitable for biomass growth. While pH value was above 9 or below 5, the biomass growth was completely inhibited. The best pH value for hydrogen production was 8, and the hydrogen accumulative volume was 84.3 mL. However, the best H2 yield was 6.8 after calculation (1.10 mole H2/mole acetate). The maximum PHB content was measured at pH values of 6.8 and 8.0.
URI: http://hdl.handle.net/11455/5690
其他識別: U0005-1708200916361300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.