Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5693
標題: 以PTFE中空絲纖維膜去除地下水中鐵錳之操作效能研究
The Study on Operation Performance of PTFE Hollow Fiber Microfilter for Iron and Manganese Removal in Groundwater
作者: 王雅君
Wang, Ya-Chun
關鍵字: Micro filtration;微過濾;ground water;iron;manganese;hollow fiber membrane;地下水;鐵;錳;中空絲纖維膜
出版社: 環境工程學系所
引用: 余菀婷、張嘉宏、樊運成,提升淨水場用水效能─以過濾單元之反沖洗用水減量為例,財團法人台灣產業服務基金會,2007。 阮文昌,薄膜生物反應槽積垢特性之研究,朝陽科技大學環境工程與管理系碩士論文, 2005。 周聖環,鐵、錳離子共存下對錳砂濾料反應行為探討,國立中興大學環境工程學系碩士論文,2005。 林士正、楊子岳、盧文章,薄膜程序前處理技術應用於廢水回收之評估,第五屆水再生及再利用研討會,台北,200-210,2000。 林何印,超濾與逆滲透薄膜程序處理及回收工業廢水之研究,國立中央大學環境工程研究所論文,2005。 林欣慧,利用UF配合鎂鹽前處理移除CMP廢水中矽酸之研究,國立交通大學環境工程研究所論文,2005。 林哲昌,淨水薄膜前處理程序評估與應用,中興工程,96,pp. 75-84,2007。 林哲昌,薄膜防垢除垢技術與應用性回顧,中興工程,91,pp. 33-42,2006。 林峻廷,海水鹹水及高鹽分地下水利用反滲透法淡化處理之可行性研究,台灣大學環境工程研究所碩士論文,全國博碩士論文,074NTU02515010,1996。 李連堯,自來水管線水質污染之研究(I):餘氯消耗速率,國立中興大學環境工程學系博士班資格考初步成果報告,1997。 胡伯瑜,自來水過濾程序中錳砂對水中錳離子界面反應之探討,國立中興大學環境工程學系博士論文,2004。 郭興中,「薄膜系統操作維護」,環保產業專欄,17,pp. 8-10,1992。 陳姝樺,以二氧化氯為前氧化劑對淨水混沉之影響探討,逢甲大學環境工程與科學研究所碩士論文。全國博碩士論文,091FCU05515008,2003。 童國倫、李雨霖、呂明洋、賴君義,膜過濾模組之簡介及其設計,化工,52(1),31-46,2005。 黃如菊,錳砂氧化吸附去除水中二價鐵錳之研究,國立中興大學環境工程學系碩士論文,1998。 黃肇隆,快濾法去除地下水鐵錳影響因素之模場研究,國立中興大學環境工程學系碩士論文,1996。 臺北自來水事業處,生飲專區-各國水質比較表。2008年3月7日,取自http://www.twd.gov.tw/water_kn/drink/drink.asp 廢水薄膜處理技術應用與推廣手冊,經濟部工業局,2000。 蔣本基,飲用水水質標準研究,行政院環境保護署,國立台灣大學環境工程研究所,1990。 鄭領英、王學松,膜的高科技應用,2003。 盧文章、楊子岳,薄膜程序回收石化產業放流水之應用,環保月刊,1(1),pp. 194-205,2001。 Adham, S. S., Snoeyink, V. L., Clark, M. M. and Anselme, C., “Predicting and verifying TOC removal by PAC in pilot-scale UF system,” J. AWWA, Vol. 85, No. 12, 58-68, 1993. AWWA, “Water Quality and Treatment,” 3rd ed., McGraW-Hill Inc., New York, N. Y., PP. 378-396, 1971. Bowen, W. R., Calvo J. I. and A. Hernandez, “Steps of Membrane Blocking inFlux Decline During Protein Microfiltration,” Journal of Membrane Science, Vol. 101, pp.153-165, 1995. Breland, E. D. and Robinson, L. R.,” Iron and manganese removal from low alkalinity groundwaters,” Report to the Water Resources Research Institute, Mississippi State University, MS., 1967. Bruggen, B. V., Braeken L. and Vendecasteele C., “Evaluation of Parameters Describing Flux Decline in Nanofiltration of Aqueous Solutions Containing Orangic Compounds,” Desalination, Vol. 147, pp.281-288, 2002. Chang, J. S., Tsai L. J. and Vigneswaran S., “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration,” Water Science and Technology, Vol. 34, pp. 133-140, 1996. Chang, J., Manem, J. and Beaubien, A., “Membrane bioprocesses for the denitrification of drinking water supplies,” Journal of Membrane Science, Vol. 80, pp. 233-239, 1993. Dart, F. J., “The Harzard of Iron,” Ottawa, Water and Pollution Control, Canada, 1974. Davis, R. H., “Membrane handbook,” Chapman and Hall, New York, 2002. Fan L., Harris J. L., Roddick A. and Booker N. A., “Influence of the Characteristics of Natural Organic Matter on the Fouling of Microfiltration Membranes,” Water Research, Vol.35, No.18, pp. 4455-4463, 2001. Hem, J.D., “Study and Interpretation of the Chemical Characteristics of Natural Water,” 2nd ed., Water Supply Paper No.1473, U.S. Geological Survey, Washington D.C., 1970. Itamar Bodek, “Environmental Inorganic Chemistry,” Pergamon Press Inc., 1988. Jack Rossum, “Iron and Manganese Control,” Water Treatment Plant Operation, Vol. 2, Chapter 12-I, 2006. Jacobs, A., “Iron Overload-Clinical and Pathological Aspects,” Seminars in Hematology, pp. 14-89, 1997. Laine, J. M. and Anselme, C., “Ultrafiltration technology status overview in municipal drinking water,” 20th Congress IWSA Conference, Durban, 1995. Larry, D. B., Joseph, F. J. and Barron, L. W., “Process chemistry for water and wastewater treatment,” Alabama: Prentice-Hall, 1982. Leiknes, T., Myklebust, H., and Odegaard, H., “Metal membranes for drinking water treatment,” Membrane Technology, pp. 6-10, 2005. Letterman, R. D., “Evaluation of alternative surface water treatment technology,” Report to New York State department of health, bureau of public water supply protection, 1991. Li, X., Li W., Lu S., Wang A., Q. Zhu and Y. Ling, “Treating dyeing wastewater by ceramic membrane in crossflow microfiltration,” Desalination, Vol. 149, pp. 199-203, 2002. McKee, J. E. and Wolf, H. W., “Water Quality Criteria Sacramento,” CA, California State Water Quality Control Board, Publication 3-A, pp.202, 1971. Mulder, M., “Basic principles of membrane technology,” Lkuwer Academic Publishers, The Netherlands, 1991. Munir, C., “Ultrafiltration and Microfiltration Handbook,” Technomic, Lancaster, 1998. Nicolaisen, B., “Developments in membrane technology for water treatment ,” Desalination, Vol. 153, pp. 355-360, 2002. Pier. S. M., “The Control of Heavy Metals in Human Health,” Texas Reports on Biological and Medicine, pp. 33-85, 1975. Richard, W. B., “Membrane technology and applications,” John Wiley & Sons, New York, 2004. Stumm, W. and Morgan J. J., “Aquatic Chemistry,” 2nd ed., John Wiley and Sons Inc., New York, 1981. SUMITOMO ELECTRIC INDUSTRIES,LTD, “PTFE Hollow fiber membrane module handbook,” 2006. Urbain, V., Benoit, R. and Manem, J., “Membrane bioreactor: a new treatment tool,” J. AWWA, 88, pp. 75-86, 1996. Vrouwenvelder, H., M. Nederlof and D. Kooij, “Biofouling of Membranes for Drinking Water Production,” Desalination, Vol.118, pp. 157-166, 1998. Xia, S., Nan, J., Liu, R. and Li, G., “Study of drinking water treatment by ultrafiltration of surface water and its application to China,” Desalination, 170, pp. 41-47, 2004. Yuasa, A., “Drinking water production by coagulation-microfiltration and adsorption-ultrafiltration,” Water Science and Technology, Vol. 37, No.10, pp. 135-146, 1998. Zeman, L. J. and Zydney, A. L., “Microfiltration and Ultrafiltration : Principlesand Applications,” Marcel Dekker, New York, 1996. Zoeteman, B.C.J. and Brin Kman, F.J.J., “Intake of Minerals by Man,” In: Hardness of Drinking Water and Public Health Proceeding of the European Scientific Colloquim”, Luxembourg, 1975, Oxford, Press, 1976. Teng, Z., Huang, J. and Fujito K., “Satoshi Takizawa, Manganese removal by hollow fiber micro-filter. Membrane separation for drinking water.” Desalination, Vol. 117, pp. 181–188, 1998. Kimura, K., Hane, Y., Watanabe, Y., Amy, G. and Ohkuma, N., “Irreversible membrane fouling ultrafiltration of surface water”, Water Research, Vol.38, pp. 3431-3441, 2004.
摘要: 
在地表水資源有限情況下,台灣地區需藉助地下水來供給民生用水,而鐵、錳普遍存在於地下層中,往往也造成處理地下水時的困擾,鐵錳的去除首先必須將還原態的離子氧化成金屬顆粒,再進行固液分離。近年來薄膜的成本有顯著減少,且薄膜系統中亦有節省空間之優點,可作為台灣淨水設施之選擇。本研究以彰化淨水場含鐵、錳的地下水,經過曝氣及氧化後,再以PTFE中空絲纖維膜(hollow fiber micro-filter)實驗模組進行分離鐵錳氧化顆粒,並比較以傳統錳砂(greensand)過濾之效益。
實驗以中空絲纖維膜過濾後的清水(After membrane,AM)中剩餘之鐵的濃度與經過錳砂處理後的情況相同,但是錳的去除狀況卻差異甚大,初期經過薄膜後之錳的濃度高達0.066mg/L高於水質標準(0.05mg/L),但經過一週的操作薄膜後之錳的濃度呈現逐步遞減,錳濃度降至0.02 mg/L以下,我們發現存在於薄膜間的鐵錳污泥扮演了重要的角色,藉由電子顯微鏡及EDS之觀察分析,這些污泥成分以鐵錳為主,且以錳的含量較高,說明了中空絲纖維薄膜間的鐵錳污泥提供了一個截流、沉澱、吸附及氧化作用的空間,使含鐵錳地下水有很好的去除效益。

In the surface water finite condition, Taiwan has to use ground water supply people to use. But the iron and the manganese widespread exist in ground water; usually bring persecution process ground water. Removal the iron and manganese, first processing is the reduction states ion to oxide ion become oxidization metal particle then carries on the liquid-solid separation. In recent years, the costs of membrane system have decreased significantly. The membrane system becomes an available choice for Taiwan water supply facility especially in the reason of space-save.
In this research by the Chang-hua water treatment plans' ground water, after passing the aeration and the oxidation, by PTFE hollow fiber micro-filter experiment mold train carries on the separation the iron and the manganese oxidation particle, and compares benefit of by the greensand filtration.
After PTFE hollow fiber membrane filtration clear water (After membrane, AM), the iron's concentration after undergoing manganese ore processing the situation is the same. But the manganese removal condition is difference. In experiment initial period, the surplus manganese density reaches as high as 0.066mg/L in the water after PTFE hollow fiber membrane filtration, Surpasses the water standard (0.05mg/L). But after one week operation, the surplus manganese concentration reduces gradually in the AM water. The manganese concentration drops to below 0.02 mg/L. We discovered that the existed iron-manganese sludge has acted the important role in hollow fiber. Observation and analysis by electron microscope and EDS, these sludge principal constituent is the iron and manganese, the manganese content is high. Explained outside the thin film iron and manganese sludge to provide a interception, precipitation, adsorption and oxidation space. Enables to have the very good elimination benefit including iron and manganese ground water.
URI: http://hdl.handle.net/11455/5693
其他識別: U0005-1805200913161500
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.