Please use this identifier to cite or link to this item:
標題: 南海區域海研船上輻射和紊流通量的觀測與模式模擬驗證
Simulation and direct over-sea observations of radiation, turbulent heat fluxes from research vessels over the South China Sea
作者: 藍詠耀
Lan, Yung-Yao
關鍵字: 南中國海;South China Sea;海研一號;沈降速度;渦流協變系統;海洋校正;R/V OR1;deposition resistance;Henry constant;chemical enhancement factor;warm layer;eddy covariance system, diurnal cycle, sea correction;sonic anemometer tilt correction;WPL correction.
出版社: 環境工程學系所
引用: Angelucci, M. G., N. Pinardi, and S. Castellari, 1998. Air-Sea Fluxes from operational analyses fields: Intercomparison between ECMWF and NCEP analyses over Mediterranean area. Physics and Chemistry of the Earth 23, 569-574. Artale, V., D. Iudicone, R. Santoleri, V. Rupolo, S. Marullo, and F. D'Ortenzio, 2002. Role of surface fluxes in ocean general circulation models using satellite sea surface temperature: Validation of and sensitivity to the forcing frequency of the Mediterranean thermohaline circulation. Journal of Geophysical Research 107, C8, doi:10.1029/2000JC000452. Blomquist, B. W., C. W. Fairall, B. J. Huebert, D. J. Kieber, and G. R. Westby, 2006. DMS sea-air transfer velocity: Direct measurements by eddy covariance and parameterization based on the NOAA/COARE gas transfer model. Geophysical Research Letters 33, L07601, doi:10.1029/2006GL025735. Bougeault, P. and P. Lacarrere, 1989. Parameterization of orography-induced turbulence in a Mesobeta-Scale Model. Monthly Weather Review 117, 1872-1890 Brostrom, G., 1996. Air-Sea Flux of CO2-Can we shortcut the annual cycle? A Greenland-Iceland-Norwegian sea case study. Physics and Chemistry of the Earth 21,517-522. Brostrom, G., 2000. The role of annual cycles for the air-sea exchange of CO2. Marine Chemistry 72, 151-169. Brutsaert, W.H., 1982. Evaporation into the Atmosphere. Reidel Pub. Co., pp. 299. Brutsaert, W. H., 1992. Stability correction functions for the mean wind-speed and temperature in the unstable surface-layer. Geophysical Research Letters 19, 469- 472. Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley, 1971. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences 28, 181-189. Bye, J.A.T., 1996. Coupling ocean-atmosphere models. Earth-Science Reviews 40, 149-162. Chang, W., B.G. Heikes,and M. Lee, 2004. Ozone deposition the sea surface: chemical enhancement and wind speed dependence. Atmospheric Environment 38, 1053-1059. Chia, H.H., and C.-C. Wu, 1998. Air-sea eddy fluxes and the mixed layer of the western equatorial pacific: observation and one-dimensional model simulation. Atmospheric Sciences, 26 (2), 157-179 (in Chinese). Chou, S.-H., E. Nelkin, J. Ardizzone, R. M, Atlas, and C.-L. Shie, 2003. Surface turbulent heat and momentum fluxes over global oceans based on the Goddard Satellite Retrievals, version 2 (GSSTF2), Journal of Climate 16, 3256- 3273. Clayson, C. A., and D. Weitlich, 2007: Variability of tropical diurnal sea surface temperature. Journal of Climate 20, 334-352. Curry, J. A., A. Bentamy, M. A. Bourassa, D. Bourras, E. F. Bradley, M. Brunke, S. Castro, S. H. Chou, C. A. Clayson, W. J. Emery, L. Eymard, C. W. Fairall, M. Kubota, B. Lin, W. Perrie, R. A. Reeder, I. A. Renfrew, W. B. Rossow, J. Schulz, S. R. Smith, P. J. Webster, G. A. Wick, and X. Zeng, 2004. SEAFLUX. American Mereorological Society 85, 409-424. Dicksonm, A., and C. Goyet, 1991. DOE Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. U.S. Department of Energy, Washington, D. C., 104pp. Donlon, C. J. , P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward, and M. J. Murray, 2002. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. Journal of Climate 15, 353-369. Duce, R., P. Liss, J. Merrill, E. Atlas, P. Buat-Menard, B. Hicks, J. Miller, J. Prospero, R. Arimoto, T. Church., W. Ellis, J. Galloway, L. Hansen, T. Jickell, A. Knap, K. Reinhardt, B. Schneider, A. Soudine, J. Tokos, S. Tsunogai, R. Wollast, and M.Zhou, 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles 5, 193-259. Edson, J.B., A.A. Hinton, K.E. Prada, J.E. Hare,and C.W. Fairall, 1998. Direct covariance flux estimates from mobile platforms at sea. Journal of Atmospheric and Oceanic technology 15, 547-562. Escoffier, C., and C. Provost, 1998. Surface forcing over the South West Atlantic according to NCEP and ECMWF reanalyses over the period 1979-1990. Physics and Chemistry of the Earth 23, 537-542. Fairall, C. W., E.F. Bradley, J.S. Godfrey, G.A. Wick, J.B. Edson, and G.S.Young, 1996. Cool-skin and warm-layer effects on sea surface temperature. Journal of Geophysical Research 83, 1889-1903. Feely, R. A., T. Takahashi, R. Wanninkhof, M. J. Mcphaden, C. E. Cosca, S. C. Sutherland, and M.-E. Carr, 2006. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. Journal of Geophysical Research 111, C08S90, doi:10.1029/2005JC003129. Frankignoulle, M., I. Bourge, C. Canon, and P. Dauby, 1996. Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea. Continental Shelf Research 16, 381-395. Foltescu, V.L., E.S. Lindgren, J. Isakson, M. Oblad, R. Tiede, J. Sommar, J.M. Pacyna, and K. Toerseth, 1996. Airborne concentrations and deposition fluxes of major and trace species at marine stations in Southern Scandinavia. Atmospheric Environment 30,3857-3872. Garland, J.A., A.W. Elzerman, and S.A. Penkett, 1980. The mechanism for dry deposition of ozone to seawater surface. Journal of Geophysical Research 85, 7488-7492. Gaspar, P., Y. Gregoris, and J.-M. Lefevre, 1990. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Test at station Papa and long-term upper ocean study site, Journal of Geophysical Research 95, 16,179- 16,193. Grassl, H., 1976. The dependence of the measured cool skin of the ocean on wind stress and total heat flux. Boundary-Layer Meteorology 10, 465-474. Gregg, M.C., H. Peters, J. C. Wesson, N. S. Oakey, and T. J. Shay, 1985. Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature 318, 140-144. Hasse, L., 1971. The sea surface temperature deviation and the heat flow at the sea-air interface. Boundary-Layer Meteorology 1, 368-379. Hauglustaine, D.A., C. Granier, G.P. Brasseur, and G. Megie, 1994. The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. Journal of Geophysical Research 99, 1173-1186. Hicks, B.B., M.L. Wesely, S.E. Lindberg, and S.M. Bromberg, 1986. Proceedings of the NaPAP workshop on dry deposition, 25-27 March, Harpers Ferry, West Virginia. Hsu, C. S., M. G. Wurtele, G. F. Cunningham, and P. M. Woiceshyn, 1997. Construction of marine surface pressure fields from scatterometer wind alone. Journal of Applied Meteorology 36, 1249-1261. Jilan, S., 2004. Overview of the SCS circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Research 24, 1745-1760. Jo, Y.-H., X.-H. Yan, J. Pan, W. T. Liu, and M.-X. He, 2004. Sensible and latent heat flux in the tropical Pacific from satellite multi-sensor data. Remote Sensing of Environment 90, 166-177. Jones, C., P. Peterson, C. Gautier, and C. Gautier, 1999. A new method for deriving ocean surface specific humidity and air temperature: an artificial neural network approach. Journal of Applied Meteorology 38, 1229-1245. Kaimal, J. C., and J. J. Finnigan, 1994. Atmospheric boundary layer flows, Their structure and measurement. Oxford University Press, 289 pp. Kanamitsu, M., R. E. Kistler, and R. W. Reynolds, 1997. NCEP/NCAR reanalysis and the use of satellite data. Advances in Space Research 19, 481-489. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002. NCEP-DOE AMIP-II reanalysis (R-2). American Meteorological Society 83, 1631-1643. Kawai, Y., and A.Wada, 2007. Diurnal sea surface temperature variation and its impact on atmosphere and ocean: A review. Journal of Oceanography 63, 721-744. Keir, R.S., G. Rehder, and M. Frankignoulle, 2001. Partial pressure and air-sea flux of CO2 in the Northeast Atlantic during September 1995. Deep-Sea Research 48, 3179-3189. King, B. A., S. G. Alderson, and D. Cromwell, 1996. Enhancement of shipboard ADCP data with DGPS position and GPS heading measurements. Deep-Sea Research I 43, 937-947. Kowalski, A. S., 2001. Deliquescence induces eddy covariance and estimable dry deposition errors. Atmospheric Environment 35, 4843-4851. Kraus, E. B., and J. A. Businger, 1994. Atmosphere-Ocean Interaction, Oxford Univ. press, 2nd edition, New York, 137-180 pp. Kuss, J., and B. Schneider, 2004. Chemical enhancement of the CO2 gas exchange as a smooth seawater surface. Marine Chemistry 91, 165-174. Lau, K.-H., A.-Y. Wang, Y.-H. Kuo, S.-J. Chen, and J. Dudhia, 1998. The Evolution of the East Asia Summer Monsoon in June 1994: A Numerical Simulation. Journal of the Meteorological Society of Japan 76, 749-764. Leredde, Y., J.-L. Devenon, and I. Dekeyser, 1999. Turbulent viscosity optimized by data assimilation. Annales Geophysicae 17, 1463-1477. Lester, A., and D. R. Myers, 2006: A method for improving global pyranometer measurements by modeling responsivity functions. Solar Energy 80, 322-331. Li, Z. X., 2001. Thermodynamic air-sea interactions and tropical Atlantic SST dipole pattern. Physics and Chemistry of the Earth (B) 26, 155-157. Lin, P.H., M.D. Chou, Q. Ji, and S.-C. Tasy, 2002. Clear-sky surface solar radiation during the South China Sea monsoon experiment. Terrestrial, Atmospheric and Oceanic Sciences 13, 185-195. Liss, P.S., L. and Merlivat, 1986. Air-sea gas exchange rates: Introduction and synthesis. The role of air-sea exchange in geochemical cycling, edited by P. Buat-Menard, pp. 113-129. Springer, New York. Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: World Ocean Atlas 2005, Volume 1: Temperature. S. Levitus, Ed. NOAA Atlas NESDIS 61, U.S. Government Printing Office, Washington, D.C., 182 pp. Martin, P.J., 1985. Simulation of the mixed layer at OWS November and Papa with several models. Journal of Geophysical Research 90, 903-916. McGillis, W.R., J.B. Edson, J.E. Hare, and C.W. Fairall, 2001. Direct covariance air-sea CO2 fluxes. Journal of Geophysical Research 106, 16729-16745. McGillis, W.R., J.B. Edson, C.J. Zappa, J.D. Ware, S.P. McKenna, E.A. Terray, J.E. Hare, C.W. Fairall, W. Drennan, M. Donelan, M.D. DeGrandpre, R. Wanninkhof, and R.A. Feely, 2004. Air-sea CO2 exchange in the equatorial Pacific. Journal of Geophysical Research109, C08S02, doi:10.1029/2003JC002256. Mckinley, G. A., T. Takahashi, E. Buitenhuis, F. Chai, J. R. Christian, S. C. Doney, M.-S. Jiang, K. Lindasy, J. K. Moore, C. Le Quere, I. Lima, R. Murtugudde, L. Shi, and P. Wetzel, 2006, North Pacific carbon cycle response to climate variability on seasonal to decadal timscales. Journal of Geophysical Research 111, C07S06, doi:10.1029/2005JC003173. McMillen, R. T., 1988. An Eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology 43, 231-245. Mellor, G.L., and P.A. Durbin, 1975. The structure and dynamics of the ocean surface mixing layer. Journal of Physical Oceanography 5, 718-728. Mellor, G.L., and T. Yamada, 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics 20, 851-875. Memery, L., M. Levy, S. Verant, and L. Merlivat, 2002. The relevant time scales in estimating the air-sea CO2 exchange in a mid-latitude region. Deep-Sea ResearchⅡ49, 2067-2092. Metzl, N., C. Brunet, A. Jabaud-Jan, A. Poisson, and B. Schauer, 2006. Summer and winter air-sea CO2 flux in the Southern Ocean. Deep-Sea ResearchⅡ53, 1548-1563. Midorikawa, T., M. Ishii, K. Nemoto, H. Kamiya, A. Nakadate, S. Masuda, H. Matsueda, T. Nakano, and H. Y. Inoue, 2006. Interannual variability of winter oceanic CO2 and air-sea CO2 flux in the western North Pacific for 2 decades. Journal of Geophysical Research 111, C08S19, doi:10.1029/2005JC003095. Miller, D. K., and K. B. Katsaros, 1992. Satellite-derived surface latent heat fluxes in a rapidly intensifying marine cyclone. Monthly Weather Review 120, 1093-1107. Moore, G. W. K., and I. A. Renfrew, 2002. An assessment of the surface turbulent heat fluxes from the NCEP-NCAR reanalysis over the western boundary currents. Journal of Climate 15, 2020-2037. Morton, B., and G. Blackmore, 2001. SCS. Marine Pollution Bulletin 42. 1236-1263. Muller, J.-F., 1992. Geographical distribution and seasonal variation of surface emissions and deposition velocity of atmospheric trace gases. Journal of Geophysical Research 97, 3787-3804. Nightingale, P.D., G. Malin, C.S. Law, A.J. Watson, P.S. Liss, M.I. Linddicoat, J. Boutin, and R.C. Upstill-Goddard, 2000. In Situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles 14, 373-387. Nilsson E.D., and U. Rannik, 2001. Turbulent aerosol fluxes over the Arctic Ocean1. dry deposition over sea and pack ice. Journal of Geophysical Research 106, 32125-32137. Park, G.-H., K. Lee, R. Wanninkhof, and R. A. Feely, 2006. Empirical temperature-based estimates of variability in the oceanic uptake of CO2 over the past 2 decades. Journal of Geophysical Research 111, C07S07, doi:10.1029/2005JC003090. Paulson, C.A., and J.J. Simpson, 1981. The temperature difference across cool skin of the ocean. Journal of Geophysical Research 86, C11, 11,044-11,054. Payne, R. E., 1972. Albedo of the sea surface. Journal of the Atmospheric Sciences 29, 959-969. Peixoto, J. P., and A. H. Oort, 1992. Physics of climate, Springer, New York, 520 pp. Perry, R.H. and D.W. Green, 2007. Perry''s Chemical Engineers'' Handbook (7th Edition), McGraw-Hill, ISBN 0-07-049841-5. Peters, H., M.C. Gregg, and J.M. Toole, 1988. On the parameterization of equatorial turbulence, Journal of Geophysical Research 93, C2, 1199-1218. Pinazo, C., P. Marsaleix, B. Millet, C. Estournel, and R. Vehil, 1996. Spatial and temporal variability of phytoplankton biomass in upwelling areas of the northwestern Mediterranean: A coupled physical and biogeochemical modelling approach. Journal of Marine Systems 7, 161-191. Rannik, U., 2001. A comment on the paper by W.J. Massman ‘A simple method for estimating frequency response corrections for eddy covariance systems'. Agricultural and Forest Meteorology 107, 241-245. Raymond, H.A., S.-M. Yi, N. Moumen, Y. Han, and T.M. Holsen, 2004. Quantifying the dry deposition of reactive nitrogen and sulfur containing species in remote areas using a surrogate surface analysis approach. Atmospheric Environment 38, 2687-2697. Rozwadowska, A., 2004. Optical thickness of stratiform clouds over the Baltic inferred from on-board irradiance measurements. Atmospheric Environment 72, 129-147. Saunders, P. M., 1967. The temperature at the ocean-air interface, Journal of Atmospheric Science 24, 269- 273. Seinfeld, J.H., and S.N. Pandis, 2006. Atmospheric chemistry and physics. 2rd ed. John Wiley & Sons, Canada, 1203 pp. Shiau, L. J., P.-S. Yu, K.-Y. Wei, M. Yamamoto, T.-Q. Lee, E.-F. Yu, T.-H. Fang, and M.-T. Chen, 2008. Sea Surface Temperature, Productivity, and Terrestrial Flux Variations of the Southeastern South China Sea over the Past 800000 Years (IMAGESMD972142). Terrestrial Atmospheric and Oceanic Science 19, 363-376. Shinoda, T., and H. H. Hendon, 1998. Mixed layer modeling of intraseasonal variability in the tropical Western Pacific and Indian Oceans. Journal of Climate 11, 2668-2685. Simmons, A. J., and J. K. Gibson, 2000. The ERA40 Project plan, ERA-40 Project plan. ERA-20 Project Rep. 1, ECMWF, 62 pp. Eur. Cent. for Medium-Range Weather Forecasts, Reading, U.K. Soloviev, A. V. and P. Schlussel, 1996. Evolution of cool skin and direct air-sea gas transfer coefficient during daytime. Bounday-Layer Meteorology 77, 45-68. Subrahamanyam, D. B., and R. Ramachandran, 2002. Air-sea interface fluxes over the Indian Ocean during INDOEX, IFP-99. Journal of Atmospheric and Solar-Terrestrial Physics 64, 291-305. Tamimi, A., E.B. Rinker, and O.C. Sandall, 1994. Diffusion coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in water over the temperature range 293-368 K. Journal of Chemical & Engineering Data 39, 330-332. Tsuang, B.J., M.D. Chou, Y. Zhang, A. Roesch, and K. Yang, 2008. Evaluations of Land-Ocean Skin Temperatures of the ISCCP Satellite Retrievals and the NCEP and ERA Reanalyses. Journal of Climate 21, 308-330. Tsuang, B.-J., C.-Y. Tu, J.-L. Tsai, J. A. Dracup, K. Arpe and T. Meyers, 2008. A more accurate scheme for calculating Earth's skin temperature. Climate Dynamics 32, 251-272. Tu, C.-Y.,and B.-J. Tsuang, 2005. Cool-skin simulation by a one-column ocean model, Geophysical Research Letters 32, L22602, doi:10.1029/2005GL024252. Uu, D. V., and J.-M. Brankart, 1997. Seasonal variation of temperature and salinity fields and water masses in the Bien Dong (South China) Sea. Mathematical and Computer Modelling 26, 97-113. Vesovic, V., A. Auziere, G. Calviac, and A. Dauriat, 2001. Modeling of the dispersion and deposition of coarse particulate matter under neutral atmospheric conditions. Atmospheric Environment 35, S99-S105. Wang, B., L. Ho, Y. Zhang, and M.-M. Lu, 2004. Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. Journal of Climate 17, 699-710. Wang, Y. H., S. Jan, and D. P. Wang, 2003. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuarine, Coastal and Shelf Science 57, 193-199. Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373-7382. Wanninkhof, R., W. Asher, R. Weppernig, H. Chen, P. Schlosser, C. Langdon, and R. Sambrotto, 1993. Gas Transfer Experiment on Georges Bank Using Two Volatile Deliberate Tracers, Journal of Geophysical Research 98(C11), 20,237-20,248. Wanninkhof, R., and M. Knox, 1996. Chemical enhancement of CO2 exchange in the natural waters. Limnology and Oceanography 41, 689-697. Wanninkhof, R., K. F. Sullivan, and Z. Top, 2004. Air-sea gas transfer in the Southern Ocean. Journal of Geophysical Research 109, C08S19, doi:10.1029/2003JC001767. Webster, P. J., C. A. Clayson and J. A. Curry, 1996. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. Journal of Climate 9, 1712-1730. Weiss, R. F., 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2, 203-215. Wesely, M.L., 1989. Parameterizations of surface resistance to gaseous dry deposition in regional-scale, numerical model. Atmospheric Environment 23, 1293-1304. Wick, G. A., W. J. Emery, L. H. Kantha, and P. Schlussel, 1996. The behavior of the bulk-skin temperature difference under varying wind speed and heat flux, Journal of Physical Oceanography 26, 1969-1988. Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001. Sonic anemometer tilt correction algorithms. Bounday-Layer Meteorology 99, 127-150. Wilber, A. C., D. P. Kratz, and S. K. Gupta, 1999. Surface emissivity maps for use in satellite retrievals of longwave radiation. NASA Tech. Publication TP-1999-209362, 35 pp. [Available online at] Wu, J., 1985. On the cool skin of the ocean. Bounday-Layer Meteorology 31, 203-207. Zhang, Y., and T. Li., 2008. Influence of the Sea Surface Temperature in the Indian Ocean on the In-Phase Transition between the South Asian and North Australian Summer Monsoons. Terrestrial Atmospheric and Oceanic Science 19, 321-329. Zong, H., Y. Liu, Z. Rong, and Y. Cheng, 2007. Retrieval of sea surface specific humidity based on AMSR-E satellite data. Deep-Sea Research I 54, 1189-1195. Zhang, Y., W. B. Rossow, and A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. Journal of Geophysical Research 109, D19105, doi:10.1029/2003JD004457.
這個研究的主題主要針對南海區域的氣象、能量通量及二氧化碳的觀測,同時比對一維海洋模式、NCEP再分析資料及衛星資料。為了作南海地區的觀測在OR1-728 (2004)、OR1-802 (2006)、OR1-837 (2007)和OR1-861, OR1-873 (2008)航次搭乘海研船至海上作觀測,同時渦流協變系統也架在海研船上作南海地區CO2濃度及通量的觀測。渦流協變系統在海上觀測首先必須克服的是船上晃動及航行造成的數據的錯誤,及海鹽干擾開放性系統CO2濃度的觀測。這個研究用陀螺儀記錄船身晃動三個角度及GPS記錄船速、船向,利用edson et al. (1998)海洋校正公式、2維3維座標旋轉及WPL等校正公式針對海上渦流協變系統20hz資料進行校正。由實驗結果顯示2007年夏季南海深水區域屬於CO2的吸收區域,北緯8度及菲律賓外海區域屬於CO2的排放區。
本研究另外使用一維海洋模式模擬南海區域能量通量及上層的水溫,由模擬結果顯示模擬值和海研船上的觀測值有良好的一致性,方均根誤差小於0.4K。海上觀測的太陽輻射約200W m-2大於潛熱通量的160 W m-2及可感熱通量的10 W m-2。模式和NCEP再分析資料主要的不同在發射率(emissivity)及日夜週期變化,NCEP的發射率為1而海上觀測的為0.96在反照率0.07-0.08時。
一般的海研船量測的海表面溫度不是真實SST,大多為抽取4m深的海水量溫度。雖然溫差只有0.3K左右,然而對於氣體沈降速度估計有0.4 – 4.3 %的差異。當warm layer 發生時會有0.8 – 4.3 %沈降誤差及地表熱通量21 W m-2高估; 當cool-skin 發生時會有0.5 – 2.0 %沈降誤差及地表熱通量21 W m-2低估。

The observations were conducted on a research vessel in summers of 2004, 2006, 2007 and 2008, includeing meteorological variables, surface energy components and CO2 fluxes. This is the pioneering for being set up eddy covariance system on a research vessel with CO2 flux ovservation in domestic. Several C++ programs were wrote for raw data processes, including CTD data arrangement, cruise routes of R/V OR1, screening mechanism of albedo and air pollutant, sea correction, sonic anemometer tilt correction and WPL correction. In order to avoid interference from R/V OR1, the terrestrial longwave radiation was faced vertical plane anf half anti-dazzling reflect solar radiation were faced downward. The CO2 fluxes after WPL correction would be changed from down to up, when CO2 fluxes were less than -5x10-2 mg m-2 s-1. The observed latent heat flux and sensible heat flux are over-estimated even though wind speed is not high. It could not be avoid interference for R/V OR1 itself, caused and over-estimated. In addition, measurements of meteorological variables and surface energy components over the South China Sea (SCS) are compared with the NCEP-DOE AMIP-II reanalysis (NCEP2). The middle part of SCS was CO2 sink, which lower CO2 concentration in air was caused by negative CO2 flux. The southern and northern part of SCS was CO2 source, which higher CO2 concentration in air was caused by positive CO2 flux during OR1-837 cruise. The average pCO2 concentration in air is 397 ppm and in water is 378 ppm during OR1-861 (2008) cruise. The average pCO2 in air > in water, most of CO2 flux is negative by Wanninhof's method.
In addition, a one-column ocean model is used to simulate surface energy components and upper-level water temperatures (at 4 m and 10 m depths). The simulated upper-level water temperatures agree well with the observations during the first two cruises (OR1-728, OR1-802) with a root-mean-square difference (RMSD) smaller than 0.4 K. The observations and the simulations show that the solar radiation (with a mean of ~200 W m-2) is stronger than the latent heat flux (~160 W m-2), and the latent heat flux is stronger than the sensible heat flux (~10 W m-2) during both periods. Nonetheless, the magnitude of variability in heat flux caused by the sporadic wind is not seen in the reanalysis, it appears in the turbulent heat flux simulated by the model. The major differences between the model estimate and the NCEP2 reanalysis are the value of emissivity and the inclusion of diurnal cycles in key variables, with the value of NCEP2 for emissivity as 1. The emissivity of this part of ocean is observed to be 0.96 with albedo at 0.07-0.08. The wind directions are consistency between NCEP and sea correction data in OR1-837 (2007) and OR1-873 (2008) cruises.
It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by about a few tenths of a degree Celsius. Nonetheless, it is not well known how large the error is associated with dry deposition (or uptake) estimation by using BSST. This study tries to conduct such an evaluation. For a case study using the data observed from a research ship that cruised over the South China Sea in the summers of 2004 and 2006, it has been found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8 - 4.3 %, and surface ground heat flux was overestimated by 21 W m-2. In contrast, under cool-skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5 - 2.0 %, varying with pollutants and surface ground heat flux was underestimated by 21 W m-2.

Keywords: South China Sea; R/V OR1; deposition resistance; Henry constant; chemical enhancement factor; warm layer; eddy covariance system, diurnal cycle, sea correction; sonic anemometer tilt correction; WPL correction.
其他識別: U0005-2008200914520700
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.