Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHsu, Shih-Chiehen_US
dc.identifier.citationAtkins, P.W., Solutions manual for physical chemistry, Oxford University Press, Oxford, U.K., 1990. Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Opening carbon nanotubes with oxygen and implications for filling. Nature, 1993. 362, p. 522. Ago, H., Kugler, T.,Cacialli, F., Work functions and surface fuctional groups of multiwall carbon nanotubes. J. Phys. Chem.: B, 1999. 103, p. 8116. Agnihotri, S., Rostam-Abadi, M., Rood, M.J., Clarkson, R.B., Adsorption of water vapor and organic vapors on single-wall carbon nanotubes. A&WMA''s 96th Annual Conference & Exhibition, 2003. San Diego, California. Agnihotri, S., Tostam-Abadi, M., Rood, M. J., Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes. Carbon, 2004. 42: 2699. Agnihotri, S., Rood, M.J., Rostam-Abadi, M., Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon, 2005. 43: 2379-2388. Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Saroy, R., Vazguez, J., Beyers, R.B., Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1992. 357, p. 365. Brunauer, S., Deming, L. S., Deming, W. S., Teller, E., J. Am. Chem. Soc., 1940. 62, p. 1723. Burghaus, U., Bye, D., Cosert, K., Goering, J., Guerard, A., Kadossov, E., Lee, E., Nadoyama, Y., Richter, N., Schaefer, E., Smith, J., Ulness, D., Wymore, B., Methanol adsorption in carbon nanotubes. Chem. Phys. Lett., 2007, 442, p.344-347. Chakrapani, N., Zhang, Y.M., Nayak, S.K., Moore, J.A., Carroll, D.L., Choi, Y.Y., Ajayan, P.M., Chemisorption of acetone on carbon nanotubes. J. Phys. Chem. B, 2003. 107(35): 9308-9311 Chang, H. C., Lin, J. C., Wu, J.Y., Chen, K. H., Infrared spectroscopy and vibrational relaxation of CHx and CDx stretches on synthetic diamond nanocrystal surfaces. J. Phys. Chem., 1995. 99(28), p. 11081. Chen, P., Wu, X., Lin, J., High H2 uptake by alkali doped carbon nanotubes under ambient pressure and moderate temperature. Science, 1999. 285, p. 91. Chuang, C.L., Chiang, P.C., Chang, E.E., Modeling VOCs adsorption onto activated carbon. Chemosphere, 2003, 53, p.17-27. Costa, P. M.F.J., Friedrichs, S., Sloan, J., Green, M. L.H., Structural studies of purified double walled carbon nanotubes (DWNTs) using phase restored high-resolution imaging. Carbon, 2004, 42, p. 2527-2533 Crespo, D. and Yang, R.T., Adsorption of organic vapors on single-walled carbon nanotubes. Industrial and Engineering Chemistry Research, 2006, 45(16), p.5524-5530 Diaz, E., Ordoonez, S., Vega, A., Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. Journal of Colloid and Interface Science, 2007, 305(1): 7-16. Dwivedi, P., Gaur, V., Sharma, A., Verma, N., Comparetive study of removal of voltile orgamic compounds by cryogenic condensation and adsorption by activated carbon fiber. Sep. Purif. Technol. 2004, 39, 23-37. David, W.M., Erickson, C.L., Johnston, C.T., Delfino, J.J., Porter, J.E., Quantitative Fourier Transform Infrared spectroscopic investigation of humic substance functional group composition. Chemosphere, 1999, 38: 2913-2928. Dresselhaus, M.S., Dresselhans, G., Saito, R., Physics of carbon nanotubes. Carbon, 1995, 33, p. 883. Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A.G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 2002, 40: 2043-2061. Ebbesen, T.W., Ajayan, P.M., Hinram, H., Anigaki, K.T., Role of SP3 defect structure in graphite and carbon nanotubes. Nature, 1994, 367, p. 19. Ebbing, D.D., Gammon, S.D., General Chemistry, 6th ed.; Houghton: Boston, MA, 1999. Eswaramoorthy, M., R. Sen, C.N.R. Rao, A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chemical Physics Letters, 1999. 304, p. 207. Endo, M., Takeachi, K., Igarashi, S., Kobori, K., Shiraishi, M., Kroto, H.W., The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids, 1993. 54, p. 1841. Eswaramoorthy, M., Sen, R., Rao, C.N.R., A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem. Phys. Let., 1999, 304, p.207 Gauden, P.A., Terzyk, A.P., Rychlicki, G., Kowalczyk, P., Loata, K., Thermodynamic properties of benzene adsorbed in activated carbons and multi-walled carbon nanotubes. Chem. Phys. Lett., 2006, 421(4-6): 409-414. Goering, J., Burghaus, U., Adsorption kinetics of thisophene on single-walled carbon nanotubes (CNTs). Chem. Phys. Lett., 2007, 447, P. 121-126. Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity, Academic Press, New York, 1982. Hsu, S., Lu, C. Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from air streams. Sep. Sci. Techno. 2007, 42(12), P.2751-2766. Hyung, H., Kim, J. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of nom characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, p.4416-4421. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354, p. 56. Iijima, S., Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363, p. 603. Ivanov, V., Nary, J.B., Lambin, P., Lucas, A., Zang, X.B., Zhang, X.F., Bernaerts, D., Van-Tendeloo, G., Amelinckx, S., Van-Landuyt, J., The study of carbon nanotubes produced by catalytic method. Chem. Phys. Let., 1994. 223, p. 329. Journet, C., Production of carbon nanotubes. Appl. Phys.: A, 1998. 67, p. 1. Ko, C.J., Lee, C.Y., Ko, F.H., Chen, H.L., Chu, T.C., Highly efficient microwave-assisted purification of mulltiwalled carbon nanotubes. Microelectron. Eng., 2004. 73-74: 570-577. Kroto, H.W., C60B Buckminsterfullerene, other fullerenes and the icospiral shell. Computers & Mathematics with Applications, 1989. 17(1-3), p. 417. Kuo, C.Y., Desorption and re-adsorption of carbon nanotubes: Comparisons of sodium hydroxide and microwave irradiation process. J. Hazard. Mater., 2008, 152, p.9-12. Lambert, J.M., Ajayan, P.M., Bernier, P.J., Planeix, M., Brotons, V., Coq, B., Castaing, J., Improving conditions towards isolating single-shell carbon nanotubes. Chem. Phys. Let., 1994. 226, p. 264. Lu, C., Chung, Y.L., Chang, K.F., Adsorption of Trihalomethanes from Water with Carbon Nanotubes. Water Rese., 2005. 39(6), p. 1183. Lu, C., Chiu, H., Adsorption of zinc (II) from water with purified carbon nanotubes. Chem. Eng. Sci., 2006. 61: 1134-1141. Liao Q., Sun J., Gao L., Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3. Carbon, 2008, 46, p.553-555. Liao Q., Sun, J., Gao, L. The adsorption of resorcinol from water using multi-walled carbon nanotubes. Colloids Surf., 2008, A312, p.160-165. Liu J.-M., Li L., Fan H.-L., Ning Z.-W., Zhao P., Evaluation of Single-walled Carbon Nanotubes as Novel Adsorbent for Volatile Organic Compounds. J. Anal. Chem., 2007. 35, p. 830-834 Li, Y., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D., Wei, B., Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Let., 2001. 350, p. 412. Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B., Lead adsorption on carbon nanotubes. Chem. Phys. Let., 2002. 357, p. 263. Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull., 2003. 38, p. 469. Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A., Behaviour of activated carons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005. 43:1758. Lin, D., Xing, B. Adsorptio of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008, 42, p.7254-7259. Lo, S.C., Lin, C.F., Wu, C.H.,Hsieh, P.H., Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol. Journal of Hazardous Materials, 2004. B114, p. 183. Long, R.Q., Yang, R.T., Carbon nanotubes as superior sorbent for dioxin removal. Journal of American Chemical Society, 2001. 123, p. 2058. Mikhail, R. S., Brunauer, S., Bodor, E. E., Investigations of a complete pore structure analysis, J. Colloid Interface Sci., 1968. 26, p.45. Odom, T.W., Huang, J.L., Kim, P., Lieber, C.M., Atomic structure and electronic properties of single walled carbon nanotubes. Nature, 1998. 391, p. 62. Onyestyak, G., Otvos, Z., Valyon, J., Kiricsi, I., Rees, L.V.C., Equilibrium and dynamic of acetylene sorption in multiwalled catbon nanotubes. Carbon, 2003, 41(6): 1241-1248. Ovejero, G., Sotelo, J.L., Romero, M.D., Rodríguez, A., Ocaña, M.A., Rodríguez, G., García, J., Multiwalled carbon nanotubes for liquid-phase oxidation. Functionalization, characterization, and catalytic activity. Ind. Eng. Chem. Res., 2006. 45: 2206-2212. Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B., Jia, Z., Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Let., 2003. 376, p. 154. Ruoff, R.S., Tersoff, J., Lorents, D.C., Subramoney, S., Chen, B., Radial deformation of carbon nanotubes by Van-der Waals force. Nature, 1993. 364, p. 514. Richard, Q.L., Ralph, T.Y., Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc., 2001. 123, p. 2058. Richardoson, J.T., Rubin, D.M., Liquid phase deposition of electrochromic thin films. Electrochim. Acta, 2001. 46, p. 2119. Ruthven, D. M., Principles of adsorption and adsorption process. John Wiley & Sons, Inc., New Jersey, U.S.A., 1984. Subamoney, S., Ruoff, R.S., Lorents, D.C., Malhotra, R., Radial single-layer nanotubes. Nature, 1993, 366, p. 637. Seraphin, S., Zhou, D., Single-walled carbon nanotubes growing radially from YC2 particles. Appl. Let., 1994. 65, p. 1593. Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. J. Chem. Phys. Let., 1998. 282, p. 429. Shim, J.W., Park, S.J., Ryu, S.K., Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 2001. 39, p.1635-1642. Simonyan, V.V., J.K. Johnson, Hydrogen storage in carbon nanotubes and graphitic nanofibers. Journal of Alloys and Compounds, 2002. 330, p. 659. Sone, H., Fugetsu, B., Tsukada, T., Endo, M., Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta, 2008, 74, p. 1265-1270. Sung, S.L., Tsai, S.F., Tseng, C.H., Chiang, F.K., Liu, X.W., Shin, H.C., Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Let., 1999. 74, p. 197. Shih ,Y., Li M., Adsorption of selected volatile organic vapors on multiwall carbon nanotubes. J. Hazard. Mater., 2008, 154, p.21-28. Sone H., Fugetsu B., Tsukada T., Endo M., Affinity-based elimination of aromatic VOCs by highly crystalline multi-walled carbon nanotubes. Talanta, 2007, 5, p.1265-1270 Sun, J., Chen, S., Rood, M. J., Rostam-Abadi, M., Correlation N2 and CH4 adsorption on microporous carbon using a new analytical model. Energy Fuels, 1998. 12:1071. Tsai, C.L.; Chen, C.F., Characterization of bias-controlled carbon nanotubes. Diamond Relat. Mater. 2003, 12: 1615-1620. Tsang, S.C., Harris, P.J.F., Green, M.L.H., Thining and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993. 362, p. 520. Tsang, S.C., Chen, Y.K., Harris, P.J.F. A sample chemical method of opening and filling carbon nanotubes. Nature, 1994, 372, p. 159. Takafumi, S., Manabu, S., Kikno, O., Evaluation of sintering ofnanometer-sized titania using aerosol method. Aerosol Sci. Technol., 1995, 23, p. 183-200. Tohji, K., Goto, T., Takahashi, H., Purifying single-walled carbon nanotubes. Nature, 1996, 383, p. 679. Tsai, S.H., Chiang, F.K., Tsai, T.G., Shieu, F.S., Shih, H.C., Synthesis and characterization of the aligned hydrogenated amorphous carbon nanotubes by electron cyclotron resonance excitation. Thin Solid Films, 1999. 366, p. 11. Wang, M., Li, F.,Zhang, R., Study on catalytic hydrogenation properties and thermal stability of amorphous NiB alloy supported on carbon nanotubes. Catalysis Today, 2004. 93-95, p. 603. Webb, P.A., Orr, C., Camp. R.W., Oliver, J.P., Yunes, Y.S. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, Norcross, GA, U.S.A., 1997. Wu, X.B., Chen, P., Lin, J., Tan, K.L., Hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy, 2000. 25. P. 659. Yan, X.M., Shi, B.Y., Lu, J.J., Feng, C.H., Wang, H.X. Adsorption and desorption of atrazine on carbon nanotubes. J. Colloid. Interf. Sci., 2008, 321, p.30-38. Yu, Y., Yu, J.C., Chan, C.Y., Che, Y.K., Zhao, J.C., Ding, L., Ge, W.K.,Wong, P.K., Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Applied Catalysis, 2005. 61, p. 1. Zhang, A., Xie, D., Wang, Y., The catalytic cracking capability of Co/CNT. Taiyuan: Shanxi publishing company of technology, 2000. p. 363. Zhao, J., Buldum, A., Han, J. Lu, J.P., Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology, 2002. 13, p.195. 楊占紅,李新海,李晶,奈米碳管純化技術研究,中南工業大學學報,1999。 李新海,楊占紅,陳志國,碳奈米管的提純-重鉻酸鉀氧化法,新型碳材料,1999。 江右君,李宸岳,多壁奈米碳管的物化特性分析與吸附效能評估,第二十二屆空氣污染控制技術研討會,2005。 江右君,吳柏昀,多壁奈米碳管對SF6吸附特性評估,第二十四屆空氣污染控制技術研討會,2007。 洪肇嘉,蔡正國,謝淑惠,複合奈米碳管吸附重金屬之模式特性探討,. 第二屆環境保護與奈米科技學術研討會,2005。 楊金鐘,李權家,披覆奈米級二氧化鈦之無機管狀濾膜製備,第二屆環境保護與奈米科技學術研討會,2005。zh_TW
dc.description.abstract奈米碳管(Carbon nanotubes, CNTs)為環境工程應用上的新興材料,文獻上鮮少有針對其吸附特性、吸附行為有完整之研究,應用於有機氣體吸附上之文獻更是缺乏。因此,本研究係應用多壁奈米碳管(Muti-wall carbon nanotubes, MWCNTs)與單壁奈米碳管(Single-wall carbon nanotubes, SWCTNs)為吸附材料。並選用目前常見於高科技產業中,作為清潔及溶劑等用途之異丙醇(Isopropyl Alcohol, IPA)做為吸附質,進行相關研究。 本研究初步直接以實驗方法測試吸附容量,並分離化學性與物理性吸附機制之貢獻量。在材料特性上,CNTs管徑大小與吸附量成反比。並且,SWCNTs的平衡吸附容量(34.58mg/g)明顯高於MWCNTs的最大吸附容量(27.48 mg/g)。本研究並收集文獻上分別用於純化或改質用途之處理分法合併比較,包括(HNO3、HCl及NaOCl三種改質方法)。結果發現經NaOCl氧化處理後的SWCNTs其物理性及化學性吸附能力增加最顯著。由孔洞分佈的結果可以發現,物理性吸附能力主要透過孔洞結構的改變,微孔體積的增加所貢獻,其平均孔徑由3.80nm減少至2.06nm,微孔洞(<2nm)的孔洞體積分佈佔總孔洞體積百分比由25%增加至67%。;化學性吸附能力則透過改質程序對奈米碳管表面進行化學修飾,增加表面官能基,進而增加化學性吸附量。在IPA進流濃度為40與800ppmv的條件下,SWCNTs(NaOCl)吸附容量約為Raw SWCNTs的1.5及3.0倍,其吸附行為並符合Langmuir 及BET等溫吸附模式。 透過吸附熱的計算同時也可以發現,當於低溫吸附環境時,由於物理性吸附較為顯著,因此吸附熱的值相對較小;然而當吸附環境溫度高於25℃時,吸附熱明顯上升,顯示物理吸附受溫度影響抑制,化學性吸附成為主要機制。 與商用活性碳同時進行再生吸附比較,結果發現CNTs較活性碳有優異的再生穩定性,經過數次吸、脫附反應循環後,CNTs仍保有較高的吸附量與去除效率。脫附速率比較結果亦可以發現,奈米碳管對溫度有較高敏感度,因此脫附時,可以偵測到較快速且較高濃縮倍率的出流氣體。顯示CNTs相較活性碳有更長的使用壽命,可重複使用,並同時有脫附所需能量較低的特性。證明CNTs較活性碳於VOCs污染控制技術應用上有更高的潛力。zh_TW
dc.description.abstractCommercially available carbon nanotubes (CNTs) were employed as adsorbents to study the adsorption of isopropyl alcohol (IPA) vapor from air stream. Adsorption of IPA vapor onto CNTs increased with decreased outer diameter (dp) of CNTs. At influent IPA concentration of 200 ppmv, the maximum adsorbed capacity of IPA onto single-walled CNTs (SWCNTs, dp<2nm, 34.58 mg/g) was higher than that onto multiwalled CNTs (dp<10 nm, 27.48 mg/g). It was indicated that SWCNTs was optimal adsorbent in all tested CNTs. Single-walled carbon nanotubes (SWCNTs) were oxidized by HCl, HNO3 and NaOCl solutions and were selected as adsorbents to study their characterizations and adsorption properties of IPA vapor from air streams. The physicochemical properties of SWCNTs were greatly changed after oxidation by HNO3 and NaOCl solutions. These modifications include the increase in surface functional groups, which enhance the chemisorption capacity of IPA, and the decrease in pore size and the increase in surface area of micropores, which improve the physisorption capacity of IPA. The maximum IPA adsorption capacities of SWCNTs, SWCNTs(HCl), SWCNTs(HNO3) and SWCNTs(NaOCl) calculated by Langmuir model are 63.48, 54.34, 72.99 and 103.56 mg/g, respectively. The SWCNTs(NaOCl) show the best performance of IPA removal and their adsorption mechanism appears mainly attributable to physical force with a relatively low influent IPA concentration but appears attributable to both physical and chemical forces with a relatively high influent IPA concentration. SWCNTs(NaOCl) was employed to study adsorption kinetics, thermodynamics and desorption of IPA vapor in an air stream. The adsorption capacity of IPA decreased with temperature indicating an exothermic nature of adsorption process and slightly decreased with relative humidity showing a hydrophobic nature of adsorbent surface. The adsorption mechanism appears mainly attributable to physical force in 5-25℃ but appears primarily attributable to chemical force in 25-35℃. A comparative study on the cyclic IPA adsorption between SWCNTs(NaOCl) and activated carbon (GAC(NaOCl)) was also conducted and the results revealed that the SWCNTs(NaOCl) show better repeated availability of IPA adsorption during 15 cycles of operation than the GAC(NaOCl). In continusely temperature swing experiment, SWCNTs(NaOCl) shows the higher removal efficiency in adsorption regin and higher concentrated rate(Ceff/C0) in desorption regine. This suggests that the SWCNTs(NaOCl) are efficient IPA adsorbents and can be used in the prolonged cyclic adsorption/desorption operation. It also revealed that SWCNTs(NaOCl) was also more suitable for application in VOCs emitted control, extraction, and chemical sensor.en_US
dc.description.tableofcontents摘 要 i Abstract iii 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 5 2.1 奈米碳管的性質、結構與製備 5 2.1.1 奈米碳管性質與結構 5 2.1.2 奈米碳管的合成 8 2.1.3 奈米碳管的純化 12 2.1.4 奈米碳管的吸附能力與環境工程上之應用 13 2.2 吸附理論 19 2.2.1 吸附機制 19 2.2.2 吸附類型 21 2.2.3 吸附影響因子 24 2.2.4 等溫吸附模式 28 第三章 研究方法 33 3.1 研究架構 33 3.2 試驗材料與設備 36 3.2.1 材料與試劑 36 3.2.2 連續式吸附實驗設備 41 3.3 分析項目及方法 45 3.3.1 VOCs氣相濃度 45 3.3.2 材料特性分析 47 第四章 理論與模式推導 53 4.1 模式推導 53 4.1.1 控制方程式 53 4.1.2 初始條件與邊界條件 56 4.2 數值方法 56 4.3 模式求解 58 4.3.1 氣相反應 59 4.3.2 固相反應 60 4.3.3 參數求取 61 第五章 結果與討論 63 5.1 奈米碳管尺寸影響因子 63 5.2 改質方法比較 66 5.3 溫度影響因子、熱力學及動力學參數 83 5.4 濕度影響因子 91 5.5 再生效能比較 93 第六章 結論與建議 109 6.1 結論 109 6.2 建議 111 Reference 113zh_TW
dc.titleAdsorption of Isopropyl Alcohol onto Carbon Nanotubesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:環境工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.