Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5712
DC FieldValueLanguage
dc.contributor謝樹木zh_TW
dc.contributor吳石乙zh_TW
dc.contributor.advisor魏銘彥zh_TW
dc.contributor.author陳學裕zh_TW
dc.contributor.authorChen, Hsueh-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:35:23Z-
dc.date.available2014-06-06T06:35:23Z-
dc.identifierU0005-2606200901351800zh_TW
dc.identifier.citation參考文獻 曲新生,陳發林,呂錫民,產氫與儲氫技術,五南出版社,2007 胡育誠,溶凝膠法製備低介電性質聚醯亞胺/二氧化矽複合材料,國立中山大學材料科學研究所,碩士論文,2004 胡蒨傑,21世紀的新森林-氣體分離薄膜,科學發展 429,2008 徐恆文,二氧化碳的捕獲與分離,科學發展 413,2007 劉英麟,賴君義,薄膜-未來能源之鑰,科學發展 429,2008 Acharya, M., Foley, H.C., 1999. Spray-coating of nanoporous carbon membranes for air separation. Journal of Membrane Science 161, 1-5. Afonso, M.D., Jaber, J.O., Mohsen, M.S., 2004. Brackish groundwater treatment by reverse osmosis in Jordan. Desalination 164, 157-171. Ahmad, A.L., Othman, M.R., Mukhtar, H., 2004. H2 separation from binary gas mixture using coated alumina-titania membrane by sol-gel technique at high-temperature region. International Journal of Hydrogen Energy 29, 817-828. Al-Bastaki, N.M., 2004. Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chemical Engineering and Processing 43, 935-940. Alcamo, J., Mayerhofer, P., Guardans, R., van Harmelen, T., van Minnen, J., Onigkeit, J., Posch, M., de Vries, B., 2002. An integrated assessment of regional air pollution and climate change in Europe: findings of the AIR-CLIM Project. Environmental Science & Policy 5, 257-272. Asaeda, M., Yamasaki, S., 2001. Separation of inorganic/organic gas mixtures by porous silica membranes. Separation and Purification Technology 25, 151-159. Barsema, J.N., Balster, J., Jordan, V., van der Vegt, N.F.A., Wessling, M., 2003. Functionalized Carbon Molecular Sieve membranes containing Ag-nanoclusters. Journal of Membrane Science 219, 47-57. Basile, A., Gallucci, F., Paturzo, L., 2005. A dense Pd/Ag membrane reactor for methanol steam reforming: Experimental study. Catalysis Today 104, 244-250. Bobrov, V.S., Digurov, N.G., Skudin, V.V., 2005. Propane dehydrogenation using catalytic membrane. Journal of Membrane Science 253, 233-242. Capar, G., Yilmaz, L., Yetis, U., 2006. Reclamation of acid dye bath wastewater: Effect of pH on nanofiltration performance. Journal of Membrane Science 281, 560-569. Car, A., Stropnik, C., Yave, W., Peinemann, K.-V., 2008. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases. Separation and Purification Technology 62, 110-117. Centeno, T.A., Fuertes, A.B., 1999. Supported carbon molecular sieve membranes based on a phenolic resin. Journal of Membrane Science 160, 201-211. Chakravorty, B., Layson, A., 1997. Ideal feed pretreatment for reverse osmosis by continuous microfiltration. Desalination 110, 143-149. Cong, H., Radosz, M., Towler, B.F., Shen, Y., 2007. Polymer-inorganic nanocomposite membranes for gas separation. Separation and Purification Technology 55, 281-291. Coronas, J., Santamaría, J., 1999. Catalytic reactors based on porous ceramic membranes. Catalysis Today 51, 377-389. Dalmon, J.-A., Cruz-López, A., Farrusseng, D., Guilhaume, N., Iojoiu, E., Jalibert, J.-C., Miachon, S., Mirodatos, C., Pantazidis, A., Rebeilleau-Dassonneville, M., Schuurman, Y., van Veen, A.C., 2007. Oxidation in catalytic membrane reactors. Applied Catalysis A: General 325, 198-204. David, L.I.B., Ismail, A.F., 2003. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation. Journal of Membrane Science 213, 285-291. Diniz da Costa, J.C., Reed, G.P., Thambimuthu, K., 2009. "High Temperature Gas Separation Membranes in Coal Gasification". Energy Procedia 1, 295-302. Flanagan, T.B., Sakamoto, Y., 1994. Hydrogen in disordered and ordered palladium alloys. International Journal of Hydrogen Energy 19, 151-159. Fuertes, A.B., Centeno, T.A., 1999. Preparation of supported carbon molecular sieve membranes. Carbon 37, 679-684. Günder, B., Krauth, K., 1999. Replacement of Secondary Clarification by Membrane Separation-Results with Tubular, Plate and Hollow Fibre Modules. Water Science and Technology 40, 311-320. Galambos, I., Mora Molina, J., Járay, P., Vatai, G., Bekássy - Molnár, E., 2004. High organic content industrial wastewater treatment by membrane filtration. Desalination 162, 117-120. Gallucci, F., Tosti, S., Basile, A., 2008. Pd-Ag tubular membrane reactors for methane dry reforming: A reactive method for CO2 consumption and H2 production. Journal of Membrane Science 317, 96-105. Geiszler, V.C., Koros, W.J., 1996. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Industrial & Engineering Chemistry Research 35, 2999-3003. Ghaly, M.Y., Härtel, G., Mayer, R., Haseneder, R., 2001. Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Management 21, 41-47. Gobina, E., Hou, K., Hughes, R., 1995. Equilibrium-shift in alkane dehydrogenation using a high-temperature catalytic membrane reactor. Catalysis Today 25, 365-370. Gong, J., Liu, Y., Sun, X., 2008. O3 and UV/O3 oxidation of organic constituents of biotreated municipal wastewater. Water Research 42, 1238-1244. Gottschlich, D.E., Roberts, D.L., Way, J.D., 1988. A theoretical comparison of facilitated transport and solution-diffusion membrane modules for gas separation. Gas Separation & Purification 2, 65-71. Graf, D., Monnerie, N., Roeb, M., Schmitz, M., Sattler, C., 2008. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. International Journal of Hydrogen Energy 33, 4511-4519. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P., 2009. Reverse osmosis desalination: Water sources, technology, and today''s challenges. Water Research 43, 2317-2348. Hatori, H., Takagi, H., Yamada, Y., 2004. Gas separation properties of molecular sieving carbon membranes with nanopore channels. Carbon 42, 1169-1173. Hayashi, J.-i., Mizuta, H., Yamamoto, M., Kusakabe, K., Morooka, S., Suh, S.-H., 1996. Separation of Ethane/Ethylene and Propane/Propylene Systems with a Carbonized BPDA−pp‘ODA Polyimide Membrane. Industrial & Engineering Chemistry Research 35, 4176-4181. Hsieh, H.P., 1991. Inorganic Membrane Reactors. Catalysis Reviews 33, 1 - 70. Hu, X., Li, A., Fan, J., Deng, C., Zhang, Q., 2008. Biotreatment of p-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresource Technology 99, 4529-4533. Ismail, A.F., David, L.I.B., 2001. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science 193, 1-18. Juang, R.-S., Lin, S.-H., Wang, T.-Y., 2003. Removal of metal ions from the complexed solutions in fixed bed using a strong-acid ion exchange resin. Chemosphere 53, 1221-1228. Julbe, A., Farrusseng, D., Guizard, C., 2001. Porous ceramic membranes for catalytic reactors -- overview and new ideas. Journal of Membrane Science 181, 3-20. Kanezashi, M., Asaeda, M., 2006. Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. Journal of Membrane Science 271, 86-93. Khayet, M., Mengual, J.I., Matsuura, T., 2005. Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. Journal of Membrane Science 252, 101-113. Kibria, A.K.M.F., Tanaka, T., Sakamoto, Y., 1998. Pressure-composition and electrical resistance-composition isotherms of palladium-deuterium system. International Journal of Hydrogen Energy 23, 891-897. Kim, Y.K., Park, H.B., Lee, Y.M., 2004. Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. Journal of Membrane Science 243, 9-17. Kinoshita, K., 1988. Carbon: electrochemical and physicochemical properties. John Wiley Sons,New York, NY. Kita H., Maeda H., Tanaka K., K.-I., O., 1997. Carbon Molecular Sieve Membrane Prepared from Phenolic Resin. Chemistry Letters 2, 179-180. Klose, F., Wolff, T., Thomas, S., Seidel-Morgenstern, A., 2004. Operation modes of packed-bed membrane reactors in the catalytic oxidation of hydrocarbons. Applied Catalysis A: General 257, 193-199. Kusuki, Y., Shimazaki, H., Tanihara, N., Nakanishi, S., Yoshinaga, T., 1997. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science 134, 245-253. Kyotani, T., 2000. Control of pore structure in carbon. Carbon 38, 269-286. Le Gouellec, Y.A., Elimelech, M., 2002. Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water. Journal of Membrane Science 205, 279-291. Lee, H.J., Yoshimune, M., Suda, H., Haraya, K., 2006. Gas permeation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support. Journal of Membrane Science 279, 372-379. Lee, S., Elimelech, M., 2007. Salt cleaning of organic-fouled reverse osmosis membranes. Water Research 41, 1134-1142. Lefebvre, O., Moletta, R., 2006. Treatment of organic pollution in industrial saline wastewater: A literature review. Water Research 40, 3671-3682. Lie, J.A., Hägg, M.-B., 2005. Carbon membranes from cellulose and metal loaded cellulose. Carbon 43, 2600-2607. Liu, Y., Wang, R., Chung, T.-S., 2001. Chemical cross-linking modification of polyimide membranes for gas separation. Journal of Membrane Science 189, 231-239. Macedonio, F., Curcio, E., Drioli, E., 2007. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination 203, 260-276. Madzingaidzo, L., Danner, H., Braun, R., 2002. Process development and optimisation of lactic acid purification using electrodialysis. Journal of Biotechnology 96, 223-239. Maluf, S.S., Assaf, E.M., 2009. Ni catalysts with Mo promoter for methane steam reforming. Fuel 88, 1547-1553. Masqu, N., Marc, R.M., Borrull, F., 1998. New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water. TrAC Trends in Analytical Chemistry 17, 384-394. Matson, S.L., Ward, W.J., Kimura, S.G., Browall, W.R., 1986. Membrane oxygen enrichment : II. Economic assessment. Journal of Membrane Science 29, 79-96. Matsumoto, M., Mochiduki, K., Fukunishi, K., Kondo, K., 2004. Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Separation and Purification Technology 40, 97-101. Menendez, I., Fuertes, A.B., 2001. Aging of carbon membranes under different environments. Carbon 39, 733-740. Michel, J.-P., Gingery, M., Lavelle, L., 2004. Efficient purification of bromoviruses by ultrafiltration. Journal of Virological Methods 122, 195-198. Nakamizo, M., Kammereck, R., Walker Jr, P.L., 1974. Laser raman studies on carbons. Carbon 12, 259-267. Oberlin, A., 1984. Carbonization and graphitization. Carbon 22, 521-541. Obuskovic, G., Majumdar, S., Sirkar, K.K., 2003. Highly VOC-selective hollow fiber membranes for separation by vapor permeation. Journal of Membrane Science 217, 99-116. Okamoto, K.i., Kawamura, S., Yoshino, M., Kita, H., Hirayama, Y., Tanihara, N., Kusuki, Y., 1999. Olefin/Paraffin Separation through Carbonized Membranes Derived from an Asymmetric Polyimide Hollow Fiber Membrane. Industrial & Engineering Chemistry Research 38, 4424-4432. Pandey, P., Chauhan, R.S., 2001. Membranes for gas separation. Progress in Polymer Science 26, 853-893. Papic, S., Vujevic, D., Koprivanac, N., Sinko, D., 2009. Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. Journal of Hazardous Materials 164, 1137-1145. Park, H.B., Jung, C.H., Kim, Y.K., Nam, S.Y., Lee, S.Y., Lee, Y.M., 2004. Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases. Journal of Membrane Science 235, 87-98. Park, H.B., Suh, I.Y., Lee, Y.M., 2002. Novel Pyrolytic Carbon Membranes Containing Silica:  Preparation and Characterization. Chemistry of Materials 14, 3034-3046. Paul, D.R., Yampol''skii, Y.P., 2000. Polymeric gas separation membranes. CRC Press (Chapter 8). Pennline, H.W., Luebke, D.R., Jones, K.L., Myers, C.R., Morsi, B.I., Heintz, Y.J., Ilconich, J.B., 2008. Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Processing Technology 89, 897-907. Peters, T.A., 1998. Purification of landfill leachate with reverse osmosis and nanofiltration. Desalination 119, 289-293. Petersen, J., Matsuda, M., Haraya, K., 1997. Capillary carbon molecular sieve membranes derived from Kapton for high temperature gas separation. Journal of Membrane Science 131, 85-94. Pohl, P., 2006. Application of ion-exchange resins to the fractionation of metals in water. TrAC Trends in Analytical Chemistry 25, 31-43. Poshusta, J.C., Noble, R.D., Falconer, J.L., 1999. Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. Journal of Membrane Science 160, 115-125. Puri, P.S., 1990. Fabrication of hollow fibre gas separation membranes. Gas Separation & Purification 4, 29-36. Qi, R., Henson, M.A., 1998a. Optimal design of spiral-wound membrane networks for gas separations. Journal of Membrane Science 148, 71-89. Qi, R., Henson, M.A., 1998b. Optimization-based design of spiral-wound membrane systems for CO2/CH4 separations. Separation and Purification Technology 13, 209-225. Rao, M.B., Sircar, S., 1996. Performance and pore characterization of nanoporous carbon membranes for gas separation. Journal of Membrane Science 110, 109-118. Rektor, A., Kozak, A., Vatai, G., Bekassy-Molnar, E., 2007. Pilot plant RO-filtration of grape juice. Separation and Purification Technology 57, 473-475. Robeson, L.M., 1991. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62, 165-185. Rutherford, S.W., Do, D.D., 1997. Review of time lag permeation technique as a method for characterisation of porous media and membranes Adsorption 3, 283-312. Saufi, S.M., Ismail, A.F., 2002. Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin Journal of Science and Technology 24, 843-854. Saufi, S.M., Ismail, A.F., 2004. Fabrication of carbon membranes for gas separation--a review. Carbon 42, 241-259. Schäfer, R., Noack, M., Kölsch, P., Thomas, S., Seidel-Morgenstern, A., Caro, J., 2001. Development of a H2-selective SiO2-membrane for the catalytic dehydrogenation of propane. Separation and Purification Technology 25, 3-9. Schindler, E., Maier, F., 1990. Manufacture of porous carbon membranes. US patent 4949860. Seader, J.D., Henley, E.J., , 1998. Separation process principles. John Wiley & Sons, Inc, 761. Seshimo, M., Ozawa, M., Sone, M., Sakurai, M., Kameyama, H., 2008. Fabrication of a novel Pd/[gamma]-alumina graded membrane by electroless plating on nanoporous [gamma]-alumina. Journal of Membrane Science 324, 181-187. Shah, S.S., Desai, J.D., Ramakrishna, C., Bhatt, N.M., 1998. Aerobic biotreatment of wastewater from dimethyl terephthalate plant using biomass support particles. Journal of Fermentation and Bioengineering 86, 215-219. Shao, P., Huang, R.Y.M., 2007. Polymeric membrane pervaporation. Journal of Membrane Science 287, 162-179. Shiflett, M.B., Foley, H.C., 1999. Ultrasonic Deposition of High-Selectivity Nanoporous Carbon Membranes. Science 285, 1902-1905. Singh-Ghosal, A., Koros, W.J., 2000. Air separation properties of flat sheet homogeneous pyrolytic carbon membranes. Journal of Membrane Science 174, 177-188. Spiegel, D.M., Baker, P.L., Babcock, S., Contiguglia, R., Klein, M., 1995. Hemodialysis urea rebound: The effect of increasing dialysis efficiency. American Journal of Kidney Diseases 25, 26-29. Steel, K.M., 1999. Carbon membranes for challenging gas separations. University of Texas, PhD thesis. Strathmann, H., 1999. Membrane processes for sustainable industrial growth. Membrane Technology 1999, 9-11. Suda, H., Haraya, K., 1997. Gas Permeation through Micropores of Carbon Molecular Sieve Membranes Derived from Kapton Polyimide. The Journal of Physical Chemistry B 101, 3988-3994. Sun, W., Wang, X., Yang, J., Lu, J., Han, H., Zhang, Y., Wang, J., 2009. Pervaporation separation of acetic acid-water mixtures through Sn-substituted ZSM-5 zeolite membranes. Journal of Membrane Science 335, 83-88. Takht Ravanchi, M., Kaghazchi, T., Kargari, A., 2009. Application of membrane separation processes in petrochemical industry: a review. Desalination 235, 199-244. Tin, P.S., Chung, T.-S., Liu, Y., Wang, R., 2004. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon 42, 3123-3131. Torres-Trueba, A., Ruiz-Treviño, F.A., Luna-Bárcenas, G., Ortiz-Estrada, C.H., 2008. Formation of integrally skinned asymmetric polysulfone gas separation membranes by supercritical CO2. Journal of Membrane Science 320, 431-435. Vaidya, S.R., Kharul, U.K., Chitambar, S.D., Wanjale, S.D., Bhole, Y.S., 2004. Removal of hepatitis A virus from water by polyacrylonitrile-based ultrafiltration membranes. Journal of Virological Methods 119, 7-9. Verma, S.K., Walker Jr, P.L., 1992. Preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons. Carbon 30, 829-836. Vincze, I., Vatai, G., 2004. Application of nanofiltration for coffee extract concentration. Desalination 162, 287-294. Vu, D.Q., Koros, W.J., Miller, S.J., 2003. Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves. Journal of Membrane Science 221, 233-239. Vu, D.Q., Koros, W.J., Miller, S.J., 2003. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science 211, 311-334. Wan, L.S., Xu, Z.K., Huang, X.J., Che, A.F., Wang, Z.G., 2006. A novel process for the post-treatment of polyacrylonitrile-based membranes: Performance improvement and possible mechanism. Journal of Membrane Science 277, 157-164. Wang, B.-G., Miyazaki, Y., Yamaguchi, T., Nakao, S.-i., 2000. Design of a vapor permeation membrane for VOC removal by the filling membrane concept. Journal of Membrane Science 164, 25-35. Wang, L.-J., Hong, F.C.-N., 2005. Carbon-based molecular sieve membranes for gas separation by inductively-coupled-plasma chemical vapor deposition. Microporous and Mesoporous Materials 77, 167-174. Wee, S.-L., Tye, C.-T., Bhatia, S., 2008. Membrane separation process--Pervaporation through zeolite membrane. Separation and Purification Technology 63, 500-516. Wei, W., Hu, H., You, L., Chen, G., 2002. Preparation of carbon molecular sieve membrane from phenol-formaldehyde Novolac resin. Carbon 40, 465-467. Wei, W., Qin, G., Hu, H., You, L., Chen, G., 2007. Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin. Journal of Membrane Science 303, 80-85. Westermann, T., Melin, T., 2009. Flow-through catalytic membrane reactors--Principles and applications. Chemical Engineering and Processing: Process Intensification 48, 17-28. Xiao, Y., Low, B.T., Hosseini, S.S., Chung, T.S., Paul, D.R., 2009. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas--A review. Progress in Polymer Science 34, 561-580. Xing, W., Ngo, H.H., Kim, S.H., Guo, W.S., Hagare, P., 2008. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater. Bioresource Technology 99, 8674-8678. Xu, Z.-K., Xiao, L., Wang, J.-L., Springer, J.g., 2002. Gas separation properties of PMDA/ODA polyimide membranes filling with polymeric nanoparticles. Journal of Membrane Science 202, 27-34. Yang, G.C.C., Tsai, C.-M., 2008. Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process. Journal of Membrane Science 321, 232-239. Yang, H.-S., Chou, C.-T., 2008. Non-isothermal simulation of cyclohexane dehydrogenation in an inert membrane reactor with catalytic pellets in the feed-side chamber. Journal of the Chinese Institute of Chemical Engineers 39, 227-235. Yoshimune, M., Fujiwara, I., Haraya, K., 2007. Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation. Carbon 45, 553-560. Yu, C.-Y., Lee, D.-W., Park, S.-J., Lee, K.-Y., Lee, K.-H., 2009. Study on a catalytic membrane reactor for hydrogen production from ethanol steam reforming. International Journal of Hydrogen Energy 34, 2947-2954. Zhang, C., Xu, Z., Chang, X., Zhang, Z., Jin, W., 2007. Preparation and characterization of mixed-conducting thin tubular membrane. Journal of Membrane Science 299, 261-267. Zhang, L., Chen, X., Zeng, C., Xu, N., 2006a. Preparation and gas separation of nano-sized nickel particle-filled carbon membranes. Journal of Membrane Science 281, 429-434. Zhang, Q.G., Liu, Q.L., Zhu, A.M., Xiong, Y., Ren, L., 2009. Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol. Journal of Membrane Science 335, 68-75. Zhang, X., Liu, H., Wang, T., Wang, A., Yeung, K.L., 2006b. Modification of carbon membranes and preparation of carbon-zeolite composite membranes with zeolite growth. Carbon 44, 501-507.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/5712-
dc.description.abstract碳分子篩選薄膜為薄膜科學領域中較新的一種薄膜材料,由於其薄膜結構為多孔結構且孔洞大小接近埃級,因此在氣體通透與分選上皆具有相當優益的效果,然而因為前趨物往往因價格過高且碳膜在氣體分選之再現性不佳而阻礙其發展。本研究則是藉由不同高分子作為碳源,討論碳膜製備過程中不同條件(如:裂解溫度、升溫速率、高分子成膜方式及膜厚控制),探討碳膜的不同孔洞結構對於不同氣體(H2、CO2、O2、N2、CH4)的通透性及分選效果,並利用熱重分析儀(TGA)、及傅立葉紅外線光譜儀(FTIR)、電子顯微鏡(SEM)等特性分析對結果加以映證。 本研究利用熱重分析儀量測聚醚醯亞胺(Poly(etherimide), PEI)之熱重損失,發現其熱穩定性優於聚醯亞胺(Polyimide, PI),故選擇其作為碳膜之前趨物;實驗中以SEM觀察到以滑動塗佈方法(Slide casting) 製備而成的碳膜之膜厚為高達28.25μm,進一步以光學顯微鏡觀察此碳膜表面結構,相較其他成膜程序之碳膜也較無缺陷,此外氫氣對於其他氣體的選擇率分別H2/CO2為5.4,H2/N2為20.2,H2/CH4為15.6,其氣體分選效果亦最為顯著;另外,實驗結果與Robenson這位學者所提出的Upper Bound line比較下,發現利用Slide casting在裂解溫度600℃條件下,H2/N2已達到Upper Bound line的氣體分離水準,此外H2/CH4的分選上更是優異於Robenson’s Upper Bound line。 關鍵字:碳膜;熱裂解;分子篩;氣體分離;膜厚zh_TW
dc.description.abstractCarbon membranes sieve (CMS), an inorganic membrane, has emerged as an alternative membrane technology in the field of gas separation. CMS have molecular sieving mechanism. They consist of micro pore channels with uniform pores to separate the different gas molecules in Angstroms. CMS is an attraction in characteristics such as excellent gas permeability, selectivity and thermal stability compared with the other molecular sieve materials. In this study, carbon membranes are prepared by pyrolysis of different polymers at higher temperatures. Preparation of carbon membranes consist several key parameters such as pyrolysis temperature, heating rate, phase inversion method and thickness. The characterization of CMS was carried out by thermal analysis, FTIR and SEM. The results obtained from TGA analysis show Poly(etherimide) (PEI) has better thermal stability than Polyimide (PI). Therefore, PEI is taken as the major carbon source for CMS preparation. Membranes made by slide casting method have the thickness 28.25μm, and few cracking were noticed as compared with other preparation methods of CMS using optical microscope. Experimental results indicate that permeability and selectivity of slide casting membranes, measured at 25 ˚C, for PEI derived CMS are: permeability (H2) = 659 barrers, selectivity (H2/N2)=20.2 and (H2/CH4)=15.6. The correlation of the permeability versus perm selectivity for the PEI derived carbon membranes prepared in this study exhibited excellent performance as compared to the derived CMS membranes prepared at 600℃. In addition, the performance exceeded Robinson's upper bound line for conventional polymeric membranes. Keywords: Carbon membrane; Thermal pyrolysis; Molecular sieve; Gas separation; Membrane thickness.en_US
dc.description.tableofcontents目錄 摘要 1 ABSTRACT II 目錄 III 表目錄 VI 圖目錄 VII 第一章 前言 1 1.1 研究緣起 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究流程 4 第二章 文獻回顧 6 2.1 薄膜分離技術應用概述 7 2.1.1液體分離薄膜之應用 7 2.1.2 氣體分離薄膜之應用 11 2.1.3 薄膜反應器概述 14 2.2 碳分子篩膜介紹 18 2.2.1 碳分子篩膜概述 18 2.2.2 碳分子篩膜氣體分離機制 19 2.2.3 碳分子篩膜的製備 25 2.3 碳分子篩薄膜孔洞結構的改質技術 31 2.4 碳膜未來的方向 35 第三章 實驗設備及方法 37 3.1 實驗試程 37 3.2 實驗藥品及氣體 38 3.3 實驗儀器 39 3.4 碳分子篩選薄膜之製備及特性分析 40 3.4.1 碳分子篩選薄膜之製備 40 3.4.2薄膜特性分析 40 3.5 碳分子篩選薄膜氣體滲透測試 43 第四章 結果與討論 44 4.1 高分子前趨物的選擇 44 4.2 升溫速率探討 52 4.3 不同前趨物濃度探討 55 4.4 高分子薄膜不同相轉換方式探討 58 4.5 成膜方式探討 62 第五章 結論與建議 70 5.1 結論 70 5.2 未來研究與建議 71 參考文獻 72 附錄一、實驗原始數據 87 附錄二、管狀爐穩定性試驗 90 附錄三、實驗製備流程圖 94 表目錄 表2.1 常見的薄膜種類與應用 9 表2.2 無機膜的特性 11 表2.3 各類薄膜材質應用於氫氣的分離之優缺點與發展展望分析 16 表2.4 模組準備的重要參數 31 表3.1 實驗試程 37 表4.1 不同裂解溫度與高分子PEI濃度下裂解形成碳膜後對於不同氣體滲透與選擇效能 55 表4.2 不同成膜方式、高分子PEI濃度及裂解溫度下形成碳膜後對於不同氣體滲透與選擇效能 61 圖目錄 圖1.1 研究流程圖 5 圖2.1 滲透蒸發概念圖 10 圖2.2 薄膜反應器中薄膜的主要功能示意圖 17 圖2.3 氣體分離薄膜之分離機制示意圖 20 圖2.4 碳分子篩選薄膜傳輸機制 20 圖2.5 溶質於薄膜中擴散之濃縮與分壓圖 21 圖2.6 (A) 氣體滲透設備圖;(B) 氣體分子穿透薄膜示意圖 22 圖2.7 下游端壓力變化圖 25 圖2.8 碳分子篩膜製備過程 26 圖2.9 碳材料中孔洞的模型結構 30 圖2.10 AgCMS membrane 擴散路徑 (a)直接擴散穿越碳基質;(b) 直接擴散穿越Ag-cluster;(c)經由Ag-cluster旁的自由體積穿越 33 圖3.1 Polyetherimide (PEI)結構式 38 圖3.2 Polyimide resin (PI)結構式 38 圖3.3 碳分子篩選薄膜之製備設備圖 39 圖3.4 氣體滲透槽 39 圖3.5 薄膜氣體分離系統 43 圖4.1 (A) PI-碳膜對於不同氣體之滲透率與(B) PI-碳膜對於不同氣體之選擇率 45 圖4.2 PI與PEI (A)熱重分析圖與(B)熱重損失微分曲線圖 46 圖4.3 PI在不同裂解溫度下FTIR圖譜 47 圖4.4 (A) PEI-碳膜對於不同氣體之滲透率與(B) PEI-碳膜對於不同氣體之選擇率 49 圖4.5 PEI濃度:15 wt.%;旋轉塗佈:5000 rpm;curing 溫度:150℃;碳化溫度:600℃ ;升溫速率:5℃/min (倍率:x100) 50 圖4.6 PEI濃度:15 wt.%;旋轉塗佈:5000 rpm;curing 溫度:150℃;碳化溫度:700℃ ;升溫速率:5℃/min (倍率:x100) 50 圖4.7 PEI濃度:15 wt.%;旋轉塗佈:5000 rpm;curing 溫度:150℃;碳化溫度:800℃ ;升溫速率:5℃/min (倍率:x100) 51 圖4.8 PEI濃度:15 wt.%;旋轉塗佈:5000 rpm;curing 溫度:150℃;碳化溫度:700℃ ;升溫速率:1℃/min (倍率:x100) 51 圖4.9 高分子PEI在700℃裂解溫度與不同升溫速率條件下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 53 圖4.10高分子PEI在800℃裂解溫度與不同升溫速率條件下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 54 圖4.11 裂解溫度700℃與不同高分子PEI濃度下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 56 圖4.12裂解溫度800℃與不同高分子PEI濃度下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 57 圖4.13 不同成膜方式與高分子PEI 15wt.%濃度下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 59 圖4.14 不同成膜方式與高分子PEI 20 wt.%濃度下裂解形成碳膜後對於不同(A)氣體滲透率與(B)選擇率之影響 60 圖4.15 滑動塗佈;PEI 20%,升溫速率:1℃/min;裂解溫度600℃;碳膜斷面結構圖 63 圖4.16 多次旋轉塗佈;PEI 20 wt.%;升溫速率:1℃/min;裂解溫度600℃;碳膜斷面結構圖 63 圖4.17 滑動塗佈;PEI 20 wt. %;升溫速率:1℃/min;裂解溫度700℃;碳膜斷面結構圖 64 圖4.18 多次旋轉塗佈;PEI 20 wt.%;升溫速率:1℃/min;裂解溫度700℃;碳膜斷面結構圖 64 圖4.19 裂解溫度600℃下不同碳膜製備方式(A)氣體滲透率與(B)選擇率之影響 66 圖4.20 裂解溫度700℃下不同碳膜製備方式之(A)氣體滲透率與(B)選擇率之影響 67 圖4.21 以滑動塗佈之碳膜製備方式在不同裂解溫度Robeson’s line比較 (A) H2/CH4 (B)H2/N2 68 圖4.22 PEI 濃度:20% wt. ;升溫速率:1 ℃/min;碳化溫度:600℃; 乾式相轉換;滑動塗佈法 69 圖4.23 PEI 濃度:20% wt. ;升溫速率:1 ℃/min;碳化溫度:700℃; 乾式相轉換;滑動塗佈法 69zh_TW
dc.language.isoen_USzh_TW
dc.publisher環境工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606200901351800en_US
dc.subjectCarbon membraneen_US
dc.subject碳膜zh_TW
dc.subjectThermal pyrolysisen_US
dc.subjectMolecular sieveen_US
dc.subjectGas separationen_US
dc.subjectMembrane thicknessen_US
dc.subject熱裂解zh_TW
dc.subject分子篩zh_TW
dc.subject氣體分離zh_TW
dc.subject膜厚zh_TW
dc.title碳分子篩選薄膜製備程序對分離氣體影響之研究zh_TW
dc.titleEffect of preparation processes of carbon molecular sieve membranes (CMSMs) for gas separationen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:環境工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.