Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5714
標題: 土壤污泥添加對小白菜生長及鎘累積量之影響
Effect of Soil and Sludge Addition on Pak-chio Growth and Cd Accumulation
作者: 邱奕龍
Chiu, Yi-Lung
關鍵字: cadmium;鎘;biosolid;water treatment residual;Pak-chio;bioconcentration factor;生物固體物;淨水污泥;小白菜;生物濃縮因子
出版社: 環境工程學系所
引用: 王一雄,陳尊賢,李達源 (1995) "土壤污染學",國立空中大學印行。 王正雄 (2007) "持久性有機污染物之植生整治",工業污染防治,第101期,1-14。 王素梅 (2008) "重金屬污染農地施用生物污泥及鎘鉛交互作用對小白菜生長及鎘累積濃度之影響",碩士論文,國立中興大學環境工程學系,台中。 王銀波,廖乾華 (1999) "國外農作物重金屬之限量標準",台灣省農藥藥物毒物試驗所,61-72。 王鯤生,林月婷,邱英嘉,周明憲 (2003) "燒結型下水污泥輕質骨材之研究",第十三屆下水道與水環境再生研討會論文集,331-337。 行政院環保署 (2007、2008) 土壤及地下水污染整治網 行政院環保署 (2003) 土壤中重金屬檢測方法—王水消化法(NIEA S321.63B)。 行政院環保署 (2000) 土壤水分含量測定方法-重量法(NIEA S280.61C)。 美國環保署 (1986) 整合毒理資料庫,Integrated Risk Information System。 朱敬平,李篤中 (2001) "污泥處置(IV):策略與永續利用",台大工程學刊,第84期,91-101。 李春樹 (2003) "銅鋅鉛在污染土壤中之化學型態及其萃取性研究",博士論文,國立成功大學環境工程系,台南。 林宜儒,洪瑞敏,吳勇興,張弘岳,盧至人 (2004) "生物固體物做為受污染土壤生物復育添加劑之可行性探討",行政院國家科學委員會專題研究計畫成果報告(NSC-92-2211-E005-010)。 卓英仁 (1988) "我國土壤污染現況分析及防治政策之研究",環保通訊雜誌社。 林淳純 (2007) "孔雀草與非洲鳳仙對污染土壤鎘及美女櫻對污染土壤鉛累積吸收之研究",碩士論文,國立台灣大學農業化學系,台北。 林浩潭 (2001) "土壤污染偵測與防治",行政院農業委員會農業藥物毒物試驗所。 林凱隆,王鯤生,林忠逸,林家宏 (2003) "廢棄污泥作為環保替代性配料之研究",第十三屆下水道與水環境再生研討會論文集,339-346。 郭育真 (2008) "在鎘污染土壤施用生物污泥對小白菜生長及鎘累積濃度之影響",碩士論文,國立中興大學環境工程學系,台中。 洪珮瑜 (2000) "淨水污泥及其燒結體對銅、鉛離子之吸附反應",國立台灣大學環境工程學系,碩士論文,台北。 胡紹華 (2005) "重金屬污泥處理技術探討",資源與環境學術研討會,花蓮。 翁仁憲、許苑培、郭孚燿、林文助 (1999) "氣象因子對小白菜生長速率之影響",中華農業氣象,第一期,7-13。 許正一,黃正介,廖明聰 (2005) "利用淨水污泥做為綠美化用地之土壤改良劑",工業污染防治,第93期,15-25。 陳宜晶 (2003) "利用添加劑提昇淨水污泥燒結之材料品質研究",碩士論文,逢甲大學環境工程與科學所,台中。 張添晉,洪明宏 (2003) "下水污泥綠農地利用準則",第十三屆下水道與水環境再生研討會論文集,355-365,台北。 張添晉,陳榮藏,史午康,吳冠德 (1998) "典型淨水場污泥之處理技術",自來水會刊第十七卷第一期,12-29。 陳逸凡 (2002) "台灣地區不同土系土壤膠體組成分對鎘吸附作用的影響",碩士論文,國立屏東科技大學環境工程與科學系,屏東。 陳智彥 (2006) "生物固體與奈米零價鐵對受三氯乙烯污染土壤及地下水中厭氧生物分解之研究",碩士論文,國立中興大學環境工程學系,台中。 陳尊賢 (2003) "受重金屬污染農地土壤之整治技術與相關問題分析",台灣土壤 及地下水環境保護協會簡訊,第9期,2-9。 莊順興,張添晉,林獻山,許鎮龍,洪明宏 (2001) "下水污泥綠地、農地利用手冊之研訂",內政部營建署委託研究報告。 張簡秀容 (2005) "設施小白菜栽培管理",桃園區農業專訊,第51期,12-15。 黃正介 (2002) "施用下水污泥對土壤重金屬含量變化與作物生長之影響",國立屏東科技大學環境工程與科學系,碩士論文。 程敏益 (2000) "不同化學調理搭配低溫調理對污泥脫水之影響",碩士論文,國立交通大學環境工程學系,新竹。 經濟部工業局 (1996) "工業區污水處理廠系統操作最佳化及人員培訓之研究計畫(VIII)輔導計畫"。 廖自基 (1989) "環境中微量重金屬元素的污染危害與遷移轉化",科學出版社。 劉又瑞 (2002) "淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究",國立交通大學環境工程學系碩士論文,新竹。 劉志成、賴志彥 (2002) "污泥調理脫水技術及其新發展",環保月刊,第二卷第八期,141-149。 歐陽嶠暉,許鎮龍,藍文忠 (1998) "都市污水處理廠污泥處理與資源化再利用之研究",第八屆下水道技術研討會論文集,19-33。 賴鴻裕,陳尊賢 (2003) "重金屬污染土壤之植生復育技術與案例分析",第八屆土壤污染整治研討會論文集,167-201。 謝哲松,盧至人,邱應志 譯 (2001) "都市廢水污泥處理",國立編譯館,台北。 Angelova, V., R. Ivanova, G. Todorov, and K. Ivanov (2008) "Heavy metal uptake by rape" Communications in Soil Science and Plant Analysis, Volume 39:344-357. Alloway, B. J. (1995) "Heavy metals in soils" Glasgow: Blackie Academic and Professional, 131-135. Babatunde, A. O. and Y. Q. Zhao (2007) "Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses" Environmental Science and Technology, Volume 37:129-164. Baghour, M., D. A. Moreno, G. Villora, J. Hernández, N. Castilla, and L. Romero (2001) "Phytoextraction of Cd and Pb and physiological effects in potato plants (Solanum Tuberosum Var. Spunta) Importance of root temperature" Journal of Agricultural and Food Chemistry, Volume 49:5356-5363. Barral, M. T., M. Arias, and J. Guerif (1998) "Effects of iron and organic matter on the porosity and structure stability of soil aggregates" Soil and Tillage Research, Volume 46: 261-272. Barančíková, G., M. Madaras, and O. Rybár (2004) "Crop contamination by selected trace elements" Journal of Soils and Sediments, Volume 4: 37-42. Bolton, K. A., E. Thorose, I. K. Iskandar, S. E. Hardy, A. C. Chang, and G. M. Pierzynski (1997) "The effect of soil organic matter on cadmium bioavailability in barley" Proceedings of Extended Abstracts From the Fourth International Conference on the Biogeochemistry of Trace Elements, Clark Kerr Camps, Berkeley, 103-104. Bremner, J. M. (1970) "Regular Kjeldahl Method" 610-616. In A.L. Page (ed.). Methodof Soil Analysis. Part 2. Chemical and Microbiological Properties.Academic Press, NY, USA. Brown, S., B. Christensen, E. Lombi, M. McLaughlin, S. McGrath, J. Colpaert, and J. Vangronsveld (2005) "An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ" Environmental Pollution, Volume 138:34-45. Callahan, M. P., P. J. A. Kleinman, A. N. Sharpley, and W. L. Stout (2002) "Assessing the efficiency of alternative phosphorus sorbing soil amendments" Soil Science, Volume 167:539-547. Chen, Z. S., J. G. Lee, and C. J. Liu (2000) "The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils" Chemosphere, Volume 41:235-242. Chhotu, D. J. and M. H. Fulekar (2008) "Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant" Environmental Engineering and Management Journal, Volume 7:547-558. Chugh, L. K. and S. K. Sawhney (1999) "Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium" Plant Physiology and Biochemistry, Volume 37:297-303. Cox, A. E., J. J. Camberato, and B. R. Smith (1997) "Phosphate availability and inorganic transformation in an alum sludge-affected soil" Journal of Environmental Quality, Volume 26:1393-1398. Dijkshoorn, W., J. E. M. Lampe, and L. W. Van Broekhoven (1981) "Influence of soil pH on heavy metals in ryegrass from sludge-amended soil" Plant and Soil, Volume 61:277-284. Faur-Brasquet, C., Z. Reddad, and K. Kadirvelu (2002) "Modeling the adsorption of metal ions ( Cu+2, Ni+2, Pb+2 ) onto ACCs using surface complexation models" Applied Surface Science, Volume 196:356-365. Garbisu, C. and I. Alkorta (2001) "Phytoextraction: A cost effective plant-based technology for the removal of metals from the environment" Bioresource Technology, Volume 77:229-236. Gardiner, D. T., R. W. Miller, B. Badamchian, A. S. Azzari, and D. R. Sisson (1995) "Effects of repeated sewage sludge applications on plant accumulation of heavy metals" Agriculture Ecosystems and Environment, Volume 55:1-6. Gee, G. W. and J. W. Bauder (1986) "Particle-size analysis" 383-412. In A. Klute et al. (eds.). Methods of Soil Analysis. Part 1. Physical and Mineralogical Method. Second Edition. Madison, WI, USA, Agronomy Monograph 9. Greger, M., T. Landberg, and R. Prost (1997) "Use of willow clones with high Cd accumulating properties in phytoremediation of agricultural soils with elevated Cd levels" International Conference on the Biogeochemistry of Trace Elements, Paris, France, 505-511. Gupta, A. K. and S. Sinha (2006) "Chemical fractionation and heavy metal accumulation in the plant of Sesamum Indicum (L.) var. T55 grown on soil amended with Ttannery sludge: selection of single extractants" Chemosphere, Volume 64:161-173. Harmon, M. E. and K. Lajtha (1999) "Analysis of detritus and organic horizon for mineral and organic constitutes" 143-165. In: G.P. Robertson, D.C. Coleman, C.S. Bledsoe, and P. Sollins (eds.). Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, Inc., NY. USA. Harris, M. A. (2001) "The effect of sewage sludge and green manure on the erodibility of two mine tailings materials" Environmental Geology, Volume 40:1367-1376. Helmke, P. A. and D. L. Sparks (1996) "Lithium, Sodium, Potassium, Rubidium, and Cesium" 551-574. In J.M. Bartels (ed.). Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America (SSSA) Book Series No. 5. 3rd Edition. Agronomy Monograph No. 9. ASA and SSSA, Madison, WI, USA. Hernandez, L. E., A. Garate, and R. Carpena-Ruiz (1995) "Effect of cadmium on nitrogen fixing pea plants grown in perlite and vermiculite" Plant Nutrition, Volume 18:287-303. Hernandez, L. E., R. Carpena-Ruiz, and A. Garate (1996) "Alterations in the mineral nutrition of pea seedlings exposed to cadmium" Plant Nutrition, Volume 19:1581-1598. Hsu, J. H. and S. L. Lo (2000) "Chemical fractionation of heavy metals in two contaminated soils" Journal of National Taitung Teachers College, Volume 11-2:147-163. Ippolito, J. A., K. A. Barbarick, and E. F. Redente (1999) "Co-application effects of water treatment residuals and biosolids on two range grasses" Journal of Environmental Quality, Volume 28:1644-1650. Jadia, C. D. and M. H. Fulekar (2008) "Phytoremediation: the application of vermicompost to remove zine, cadmium, copper, nickel and lead by sunflower plant" Environmental Engineering and Management Journal, Volume 7:547-558. Jiang, W. S., D. H. Liu, and W. Q. Hou (2001) "Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.)" Bioresource Technology, Volume 76:9-13. Jones, Jr. T. B. (2001) "Laboratory guide for conducting soil test and plant analysis" CRC Press LLC, USA. Kabata-Pendias, A. and H. Pendia (2001) "Trace elements in plants" 73-98. In A. Kabata-Pendias and H. Pendia (eds.). Trace Element in Soils and Plants. 3rd Edition. CRC Press, Boca Raton, FL, USA. Kloke, A., D. R. Saurebeck, and H. Vetter (1984) "The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains" 113-141. In J.O. Nriagu (ed.). Changing Metal Cycles and Human Health. Springer-Veriag, Berlin, Germany. Kuo, S. (1996) "Phosphorus" 869-919. In J.M. Bartels (ed.). Methods of Soil Analysis, Part 3. Chemical Methods. Soil Science Society of America (SSSA) Book Series No. 5. 3rd Edition. ASA, Inc. and SSSA, Inc., Madison, WI, USA. Lai, H. Y., S. W. Chen, and Z. S. Chen (2008) "Pot experiment to study the uptake of Cd and Pb by three Indian Mustards (Brassica Juncea) grown in artificially contaminated soils" International Journal of Phytoremediation, Volume 10:91-105. Lee, C. H., C. Y. Chiu, Y. M. Tzou, P. N. Chiang, and M. K. Wang (2002) "Cadmium and zinc heavy metals contaminated soils" Soil and Environment, Volume 5:301-308. Lien, H. L. and W. X. Zhang (2001) "Nanoscale iron particles for complete reduction of chlorinated ethenes" Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 191:97-105. Liu, D. H., W. S. Jiang, and X. Z. Gao (2003) "Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic" Biologia Plantarum, Volume 47:79-83. Liu, Y., S. A . Majetich, R. D. Tilton, D. S. Sholl, and G. V. Lowry (2005) "TCE Dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties" Environmental Science and Technology, Volume 39:1338-1345. Ma, L. Q. and G. N. Rao (1997) "Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils" Journal of Environmental Quality, Volume 26:259-264. McLean, E. O. (1982) "Soil pH and lime requirement" 199-224. In A.L. Page et al. (eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second edition. Madison, WI, USA, Agronomy Monograph 9. McKenna, I. M., R. L. Chaney, and F. M. Williams (1993) "The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach" Environment Pollution, Volume 79:113-120. Metcalf and Eddy (1991) "Wastewater engineering-treament, disposal and reuse" 3rd Edition, McGraw-Hill. Mishra, V. K. and B. D. Tripathi (2008) "Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes" Bioresource Technology, Volume 99:7091-7097. Moyukh G. and S. P. Singh (2005) "A comparative study of cadmium phytoextractioin by accumulator and weeds species" Environment Pollution, Volume 133:365-371. Mulligan, C. N., R. N. Yong, and B. F. Gibbs (2001) "Remediation technologies for metal-contaminated soils and groundwater: an evaluation" Engineering Geology, Volume 60:193-207. Naidu, R., N. S. Bolan, R. S. Kookana, and K.G. Tiller (1994) "Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils" European Journal of Soil Science, Volume 45:419-429. Naidu, R., D. Oliver, and S. McConnell (2003) "Heavy Metal Phytotoxicity in Soils" National Environment Protection Council Service Corporation, 235-241. Nelson, D. W. and L. E. Sommers (1982) "Total carbon, organic carbon, and organicmatter" 539-580. In A.L. Page et al. (eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second Edition. Madison, WI, USA, Agronomy Monograph 9. Obata, H. and M. Umebayashi (1997) "Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium" Journal of Plant Nutrition, Volume 20:97-105. Pérez-Sirvent, C., M. L. García-Lorenzoa, M. J. Martínez-Sáncheza, M. C. Navarroa, J. Marimóna, and J. Bechb (2007) "Metal-contaminated soil remediation by using sludges of the marble industry: Toxicological evaluation" Environment International, Volume 33:502-504. Planquart, P., G. Bonin, A. Prone, and C. Massiani (1999) "Distribution, movement and plant availability of trace metals in soils amended with sewage sludge composts, application to low metal loadings" Science of Total Environment, Volume 241:161-179. Podlesáková, E., J. Nemecek, and R. Vácha (2001) "Mobility and bioavailability of trace elements in soils" 21-41. In I.K. Iskander and M.B. Kirkham (eds.). Trace Elements in Soils. Lewis Publisher, FL, USA. Qasim, S. R. (1994) "Wastewater treatment plants: planning, design, and operation" Technomic Publishing Company, Inc., Pennsylvania. Raskin, I., P. B. A. N. Kumar, S. Dushenkoy, and D. E. Salt (1994) "Bioconcentration of heavy metals by plants" Current Opinion in Biotechnology, Volume 5:285-290. Rhoades, J. K. (1982) "Cation exchange capacity" 149-158. In A.L. Page et al. (eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Second Edition. Madison, WI, USA, Agronomy Monograph 9. Ros, M., M. T. Hernandez, and C. García (2003) "Soil microbial activity after restoration of a semiarid soil by organic amendments" Soil Biology and Biochemistry, Volume 35:463-469. Sastre, I., M. A. Vicente, and M. C. Lobo (1996) "Influence of the Application of sewage sludges on soil microbial activity" Bioresources Technology, Volume 57:19-23. Schmidt, U. (2003) "Enhancing phytoremediation: The effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals" Journal of Enviromental Quality., Volume 32:1939-1954. Schwartz, C., G. Echevarria, and J. L. Morel (2003) "Phytoextraction of cadmium with Thlaspi caerulescens" Plant Soil, Volume 249:27-35. Shuman, L. M. (1985) "Fractionation method for soil microelements" Soil Science, Volume 140:11-22. Singh, O. V., S. Labana, G. Pandey, R. Budhiraja, and R. K. Jain (2003) "Phytoremediation: an overview of metallic ion decontaminationfrom soil" Applied Microbiology and Biotechnology, Volume 61:405-412. Sridhar, S., F. M. Victor, and C. M. Steven (1999) "Phytomediation: an ecologicalsolution to organic chemical contamination" Ecological Engineering, Volume 18:647-658. Tessier, A., P. G. C. Campbell, and M. Bisson (1979) "Sequential extraction procedure for the speciation of particulate trace metals" Analytical Chemistry, Volume 51:844-851. Uraguchi, S., I. Watanabe, A. Yoshitomi, M. Kiyono, and K. Kuno (2006) "Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea" Journal of Experimental Botany, Volume 57:2955-2965. US EPA (2000) "Biosolids technology fact sheet: land applied of biosolids"(EPA 832-F-00-064) Veith, G. D., D. L. Defoe, and B. V. Bergstedt (1979) "Measuring and estimating the bioconcentration factor of chemicals on fish" Journal of the Fisheries Research Board of Canada, Volume 36:1040-1048. Vieira, R. F. (2001) "Sewage sludge effects on soybean growth and nitrogen fixation" Biology and Fertility Soils, Volume 34:196-200. Wang, L., Q. Zhou, L. Ding, and Y. Sun (2008) "Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator" Journal of Hazardous Materials, Volume 154:818-825. Wasay, S. A., S. Barrington, and S. Tokunaga (1998) "Retention form of heavy metals in three polluted soils" Journal of Soil Contamination, Volume 7:103-119. Wong, J. W. C., G. X. Li, and M. H. Wong (1996) "The growth of Brassica chinensis in heavy metal contaminated sewage sludge compost from Hong Kong" Bioresource Technology, Volume 58:309-313. World Health Organization (1989) "Evaluation of certain food additives and contaminants" Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Series, no. 837, Geneva 124. Xian, X. (1987) "Chemical partitioning of cadmium, zinc, lead, and copper in soils near smelters" Journal of Environmental Science and Health, Volume 6:527-541. Yanai, J., F. J. Zhao, S. P. McGrath, and T. Kosaki (2006) "Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens" Environmental Pollution, Volume 139:167-175. Yang, X. E., X. X. Long, H. B. Ye, Z. L. He, P. J. Stoffella, and D. V. Calvert (2004) "Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)" Plant and Soil, Volume 259: 181-189. Yrasad, M. N. V. and J. Hagemeyer (1999) "Biogeochemical process in the rhizosphere: role in phytoremediation of metalpolluted sites" Heavy Metal Stress in Plants from Molecules to Ecosystem, Berlin, 273-303. Zufiaurre, R., A. Olivar, P. Chamorro, C. Nerín, and A. Callizo (1998) "Speciation of metals in sewage sludge for agricultural uses" Analyst, Volume 259:255-259.
摘要: 
本研究鎘濃度為20 mg/kg-soil,在不同pH (6.4、6.7及7.0)的鎘污染(Cd-20)土壤中,分別添加佔土壤總重5 %之生物固體物及淨水污泥,以暸解土壤中鎘之型態分布及濃度變化。此外,小白菜種植於受鎘污染土壤中,探討添加污泥與改變土壤pH值對小白菜生長量、體內鎘的累積量及總移除量之影響。
由土壤試驗結果發現,鎘之型態分布以可交換離子相、碳酸鹽結合相、鐵錳氧化物結合相及有機物結合相等化學型態存在於土壤中。有機物結合相僅出現於添加生物固體物之土壤中,而添加淨水污泥會提高碳酸鹽結合相之鎘濃度。當土壤pH趨向於酸性環境(pH 6.4),土壤中可交換離子相之鎘濃度隨著土壤pH下降而增加,則鎘之移動性亦會提高。
盆栽試驗結果發現,小白菜種植於受鎘污染之土壤45天後,pH 7.0為小白菜生長之限制因子。植體地上部生長量未隨著土壤pH下降而顯著增加,但植體鎘濃度卻隨著土壤pH下降而顯著增加,代表小白菜為可忍受鎘之作物;生物固體物可提供小白菜所需的營養鹽,促使植體乾重量增加,以及提高植體地上部鎘含量,因而提昇小白菜地上部鎘之累積量;添加淨水污泥的土壤因含有豐富的碳酸鹽,將減少土壤中可交換離子相之鎘濃度,因而植體地上部累積較少的鎘濃度,土壤中的鎘毒害亦降低。添加生物固體物後,生物濃縮因子(Bioconcentration factor, BCF)值較高,表示可增加小白菜累積鎘之能力;反之,添加淨水污泥則降低植體鎘之累積濃度。
依據WHO規定人體可容許之鎘含量為60 μg/person-day,攝取過量則造成生物體之健康危害(例如痛痛病)。依據行政院衛生署2009年之每日飲食指南,倘若每人每日攝取本試驗收割後之小白菜300 g,經換算植體內鎘含量為518 μg,顯然超過人體可容許量,故應謹慎考量於鎘污染農地種植食用的小白菜。

The objective of the study was to assess the effect of adding biosolid (BS) and water treatment residual (WTR) on the growth and accumulation of Chinese cabbage (Pak-chio) grown in cadmium- (Cd-) contaminated soils. The experimental soils were first artificially spiked with Cd solutions to make their final concentration at 20 mg/kg-soil, adjusted in different pH values (6.4, 6.7 and 7.0), and then added 5% of BS or WTR. Seeds of Pak-chio were planted in the potted and Cd-treated soils in the greenhouse for 45 days with three replicates. The effects of amendments and pH values on the growth and accumulation of Cd of Pak-chio were assessed in the end of pot experiment.
Experimental results showed that the fractions of Cd in the artificially contaminated soils included exchangeable ion, carbonate-bound, Fe/Mn-oxide, and organic matter bound. Owing to the addition of BS, organic matter bounding was the primary fraction presented. The application of WTR could increase the percentage of carbonate bounding fraction. The exchangeable fraction of Cd increased in the pH 6.4 compared with that of other pH values.
Pak-chio's growth was restricted by pH 7.0 in Cd-containment soil after growing for 45 days. The biomass of Pak-chio was not significantly increased when the soil pH decreased, but the concentrations of Cd in their shoots increased significantly which showed that Pak-chio was potential a Cd-tolerant crop. Biosolid contained inorganic salt which could be land application to increase the content of soil nutrient and thus to enhance the growth and accumulation of Cd of crop. The carbonate in WTR could decrease exchangeable Cd concentration and thus to diminish the toxicity of Cd for Pak-chio. The bioconcentration factor (Shoot Cd concentration / soil Cd concentration) of Pak-chio increased in the BS amended soils but decreased in the WTR amended soils.
According to World Health Organisation regulations, the accumulation concentration of cadmium exceeded the maximum acceptable concentration at 60 μg /person-day might be harmful to human health, such as Itai-Itai disease. The Cd intake was equal to 518 μg /person-day by using the daily intake of vegetable (300 g/person-day) reported by Health Food Control at year 2009 and suppose that Pak-chio was the only intake. The high risk was because artificially Cd-contaminated soils with higher percentage of exchangeable fraction of Cd were used in this study, In-Situ contaminated soils should be used in further experiments to evaluate the feasibility and safety of planting Pak-chio as edible plants in the Cd-containment soil.
URI: http://hdl.handle.net/11455/5714
其他識別: U0005-2807200915203000
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.