Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5722
標題: 酸洗後垃圾焚化底渣與高嶺土/活性碳對有/無機物之吸脫附研究
The Comparison of Bottom Ash from Municipal-Solid-Waste Incineration(MSWI) with Kaolin/Activated Carbon`s Adsorption/Desorption Ability to Organic/Inorganic Compounds
作者: 曾之羿
TSENG, CHIH-YI
關鍵字: MSWI bottom ash;甲基藍銅;adsorption;desorption;copper;methylene blue;等溫動力吸脫附
出版社: 環境工程學系所
引用: 一、中文部分 劉詩云 (2009)。酸洗後垃圾焚化底渣去除染料水中色度之研究。國立中興大學環境工程系碩士論文。 連雅棉(2009)。紫外光活化過硫酸鹽氧化甲基第三丁基醚之研究。國立成功大學環境工程學系碩士論文。 吳品漢 (2008)。以水洗法去除底渣氯鹽之可行性評估及底渣中重金屬相態變遷之探討。國立中興大學環境工程系碩士論文。 黃韋翔 (2008)。廢棄茶葉粉去除水溶液中鹼性染料(Methylene blue)之吸附特性研究 。中華民國環境工程學會,2008廢水處理技術研討會。 吳芳禎、彭元興、陳宣佑、陳宇銘、楊逸婷 (2008)。蔗渣灰去除染料廢水色度之研究。中華民國環境工程學會,2008廢水處理技術研討會。 劉俊延(2007)。過硫酸鹽再生活性碳及氧化甲基第三丁基醚之研究。國立成功大學環境工程學系碩士論文。 胡正苓(2007)。以可見光催化V-TiO2 光觸媒降解亞甲基藍之研究。國立中興大學環境工程學系碩士論文。 林孟賢 (2007)。自組裝單分子膜上金膠體粒子之靜電吸附動力學研究。國立清華大學物理所碩士論文。 蔡安東 (2007)。化學活化法製備孟宗竹活性碳製程之研究。國立雲林科技大學或學工程與材料工程所碩士論文。 洪鈴雅(2007)。奈米二氧化鈦粒子嵌入中孔洞氧化矽材之合成與分析及性質之探討。國立成功大學材料科學及工程學系碩士論文。 許菁珊 (2006)。沸石對於光電產業揮發性有機化合物之吸/脫附研究。國立中山大學環境工程研究所碩士論文。 林佩雲(2005)。水中常見之陰離子對過硫酸鹽熱催化氧化三氯乙烯的影響。國立成功大學環境工程學系碩士論文。 陳慶隆 (2005)。幾丁聚醣對廢水中含氯有機物與染料吸附之研究。私立朝陽科技大學環境與工程管理系碩士論文。 賴竺均 (2005)。超音波對於合成樹脂脫附行為之影響。國立台灣科技大學化學工程學系碩士論文。 黃富昌 (2004)。土壤結構及化性對有機污染物吸/脫附特性之研究。國立中央大學環境工程研究所博士論文。 陳韋伶 (2004)。不同焚化爐底碴物化性質比較分析。國立中央大學土木工程研究所碩士論文。 陳威錦 (2004)。熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究。國立中山大學環境工程研究所碩士論文。 吳翠芬(2003)。正十二碳醇之相變化暨吸附動力學行為研究。國立台灣科技大學化學工程學系碩士論文。 林育承 (2002)。燃煤底灰應用於污染去除之研究。私立逢甲大學土木及水利工程研究所碩士論文。 陳慶隆(2002)。酸鹼值、液固比與醋酸鹽濃度對飛灰中金屬溶出之影響。國立中興大學環境工程學系碩士論文。 張建楷 (2001)。界面活性劑C12E4與揆酸之吸附動力學研究。國立台灣科技大學化學工程學系碩士論文。 林敬智(2001)。下水污泥灰渣應用於銅離子去除之初步探討。國立中央大學環境工程學系碩士論文。 曾文妮(2001)。土壤無機相結構對揮發性有機污染物吸/脫附行為之影響。國立中央大學環境工程學系碩士論文。 林彥志(2000)。TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究。國立成功大學化學工程學系碩士論文。 高平洲 (1998)。以飛灰去除水中氯酚之研究。中興大學環境工程學系碩士論文。 黃慈玲 (1999)。以飛灰去除染料及染料廢水之研究。國立中興大學環境工程系碩士論文。 台中市焚化底渣委託再利用處理計畫結案報告書(2010)。映誠股份有限公司。 台中市焚化底渣委託再利用處理協助監督技術服務結案報告(2010)。中興工程顧問股份有限公司。 沈永嘉 (2001)。有機顏料。化學工業出版社。 王明光 (2000)。土壤環境礦物學。藝軒圖書出版社。 魏稽生 譚立平 (1999)。台灣非金屬經濟礦物。經濟部中央地質調查所。 李家珍 (1998)。染料、染色工業廢水處理。化學工業出版社。 許明發 (1997)。碳、碳纖維、碳複合材料之加工技術及應用。滄海書局。 徐紹齡 等 (1995)。無機化學叢書。科學出版社。 朱樹恭 (1982)。顏料。台灣商務印書館。 邱永亮 (1978)。染料之合成與特性。科學圖書大庫。徐氏基金會。 邱永亮 魏盛德 (1977)。染色化學。徐氏基金會出版社。 二、西文部分 Amin, N. K. (2009). Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, Vol. 165, pp. 52–62. Aouada, G., Crovisiera, J. L., Damidotb, D., Stillea, P., Hutchensc, E., Muttererd, J., Meyere, J. M. & Geoffroye, V. A. (2008). Interactions between municipal solid waste incinerator bottom ash and bacteria (Pseudomonas aeruginosa). Science of the Total Enviroment, Vol. 309, pp. 385-393. Ambroise, J., Pera, J., Coutaz, L. & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, Vol. 27, pp. 1-5. Ip, A. W. M., Barford, J.P. & McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents:Effect of salt, surface chemistry, pore size and surface area. Journal of Colloid and Interface Science, Vol. 337, pp.32-38. Badmus, M. A. O., Audu, T. O. K. &Anyata, B. U. (2007). Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus). Turkish J. Eng. Env. Sci, Vol. 31 , pp.251 – 263. Boaventura, R. A. R., Santos, S. C. R. & Vilar, V. J. P. (2008). Waste metal hydroxide sludge as adsorbent for a reactive dye. Journal of Hazardous Materials, Vol. 153, pp. 999-1008. Christensen, T. H., Tüchsen, P. L. & Bendz, D. (2007). The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles. Journal of Contaminant Hydrology, Vol. 94, pp. 178-194. Morris, C., Mooney, S.J. & Young, S.D. (2008). Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils. Geoderma, Vol. 146, pp. 434-438. Comans, R. N. J., Dijkstra, J. J., Meeussen, J. C. L. & Van der Sloot, H. A. (2008). A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash. Applied Geochemistry. Gepubliceerd in Applied Geochemistry, Vol. 23, pp. 1544-1562. Dincer, A. R., Gu ̈nes, Y., Karakaya, N. & Gu ̈nes, E. (2007a). Comparison of activated carbon and bottom ash for removal of reactive dye from aqueous solution. Bioresource Technology, Vol. 98, pp. 834-839. Ducom, G., Rendek, E. & Germain, P. (2007). Assessment of MSWI bottom ash organic carbon behavior: A biophysicochemical approach. Chemosphere, Vol. 67, pp. 1582-1587. Espiell, F., Chimenos, J. M., Segarra, M. & Fernan ́dez M. A. (1999 ). Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, Vol. 64, pp. 211-222. Gupta, V. K., Mittal, A. & Gajbe, V. (2005). Adsorption and desorption studies of a water soluble dye, Quinoline yellow, using waste materials. Journal of Colloid and Interface Science, Vol. 284, pp. 89-98. Gupta, V. K. & Suhas. (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, Vol. 90, pp. 2313–2342. Gupta, V. K., Mittal, A., Malviya, A. & Mittal, J. (2008a). Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil yellow) by adsorption over waste materials (Bottom ash and de-oiled soya). Journal of Hazardous Materials, Vol. 151, pp. 821-832. Gupta, V. K., Mittal, A., Gajbe, V. & Mittal, J. (2008b). Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. Journal of Colloid and Interface Science, Vol. 319, pp. 30-39. Hahner, G., Marti, A., Caseri, W. R. & Spencer, N. D. (1996). Orientation and electronic structure of methylene blue on mica: A near edge x-ray absorption fine structure spectroscopy study. American Institute of Physics. J. Chem. Phys, Vol. 104, pp 7749-7757. Halsey, G. (1948). Physical adsorption on non-uniform surfaces. The Journal of Chemical Physics, Vol. 16, No. 10. Hameed, B.H. & Rahman, A.A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, B160, pp. 576–581. Hameed, B. H. (2009). Evaluation of papaya seeds as a novel non- conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials, Vol. 162, pp. 939-944. Hameed, B. H. (2008). Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. Journal of Hazardous Materials, Vol. 154, pp. 204-212. Hameed, B. H., Mahmoud, D. K. & Ahmad, A. L. (2008a). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, Vol. 158, pp. 65-72. Hameed, B. H., Tan, I. A. W. & Ahmad, A. L. (2008b). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, Vol. 154, pp. 337-346. Hameed, B. H. & El-Khaiary, M. I. (2008). Equilibrium, kinetics and mechanism of malachite green adsorptionon activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, Vol. 157, pp. 344-351. Hang, P. T. & Brindly, G. W. (1970). Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays and Clay Minerals, Vol. 18, pp. 203-212. Hasan, S. H., Singh, K. K., Prakash, O., Talat, M. & Ho, Y. S. (2008). Removal of Cr(VI) from aqueous solutions using agricultural waste ‘maize bran’. Journal of Hazardous Materials, Vol. 152, pp. 356-365. Ho, Y. S. & Ofomaja, A. E. (2008). Effect of temperatures and pH on methyl violet biosorptionby Mansonia wood sawdust. Bioresource Technology, Vol. 99, pp. 5411-5417. Ito, R., Dodbiba, G., Fujita, T. & Ahn, J. W. (2008). Removal of insoluble chloride from bottom ash for recycling. Waste Management, Vol. 28, pp. 1317-1323. Kopac, T., Yener, J., Dogu, G. & Dogu, T. (2008). Dynamic analysis of sorption of Methylene Blue dye on granular and powdered activated carbon. Chemical Engineering Journal, Vol. 144, pp. 400-406. Liu, Y. (2006). Some consideration on the Langmuir isotherm equation. Colloids and Surfaces A: Physicochem. Eng. Aspects 274, pp. 34-36. McKay, G. & Ho, Y. S. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, Vol. 70, pp. 115-124. Mittal, A., Gajbe, V. & Mittal, J. (2008). Removal and recovery of hazardous triphenylmethane dye, methyl violet through adsorption over granulated waste materials. Journal of Hazardous Materials, Vol. 150, pp. 364-375. Nairam F, Barros., Filho, N.B. Comerford. & Nairam F, Barros. (2005).Phosphorus sorption, desorption and resorption by soils of the Brazilian Cerrado supporting eucalypt. Biomass and Bioenergy, Vol. 28, pp. 229-236. Oladoja, N. A., Asia, I. O., Aboluwoye, C. O., Oladimeji, Y. B. & Ashogbon, A. O. (2008). Studies on the sorption of basic dye by rubber(hevea brasiliensis) seed shell. Turkish J. Eng. Env. Sci, Vol. 32, pp. 143-152. Purkait, M. K., Nandi, B. K. & Goswami, A. (2009a). Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Applied Clay Science. Applied Clay Sci, Vol. 42, pp. 583-590. Purkait, M. K., Nandi, B. K. & Goswami, A. (2009b). Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials. Vol. 161, pp. 387-395. Rauf, M. A., Bukallah, S. B. & AlAli, S. S. (2007). Removal of methylene blue from aqueous solution by adsorption on sand. Dyes and Pigments, Vol. 74, pp. 85-87. Sakai, S., Sawell, S. E., Chandler, A. J., Eighmy, T.T., Kosson, D. S., Vehlow, J. J., van der Sloot, H. A., Hartldn, J.& Hjelmar, O. (1996). World trends in municipal solid waste management. Waste Management, Vol. 16, Nos 5/6, pp. 341-350. Shihua, Chen. & Marianne C, Nyman. (2007). Sorption and desorption behavior of benzidine in different solvent–sediment systems. Chemosphere, Vol. 66, pp. 1523-1534. Sun, W. L., Qu, Y. .Z., Yu, Q. & Ni, J. R. (2007). Adsorption of organic pollutants from coking and papermaking wastewaters by bottom ash. Journal of Hazardous Materials. Vol. 154, pp. 595-601. Thiravetyan, P., Nakbanpote, W. & Leechart, P. (2009). Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. Journal of Environmental Management, Vol. 90, pp. 912–920. Wey, M. Y. & Fang, T. J. (1995). The Effect of Organic and Inorganic Chlorides on the Formation of HCl with Various Hydrogen Containing Sources in Fluidized Bed Incinerator. Environment International, Vol. 21, pp. 423-431. Wu, S. H., Kuo, C. Y. & Wu, J. Y. (2008). Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science. Vol. 327, pp. 308-315. Ho, Y.S. & McKay,G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, Vol. 70, pp. 115-124.
摘要: 
台灣地區的都市有害廢棄物多為焚化處理,焚化雖為一勞永逸的做法但焚化殘留下來的龐大飛灰和底渣則是後續需處理的難題。國外的底渣再利用多以土木工程的替代骨材為主,但底渣具有多孔隙及高比表面積的特性,近年來國內外學者皆嘗試以此特性發展其他再利用可能性。本研究是利用底渣做為吸附劑,先將底渣以硝酸浸泡洗去表面雜質再對於水中的染劑及重金屬進行吸附以達到去除的目的,同時使用吸收能力強之高嶺土及具高比表面積之活性碳作為比較之吸附劑,嘗試在三種不同溫度(15℃/25℃/35℃)和三種不同酸鹼環境(pH4/pH7/pH10)下探討其吸附特性,並使用磷酸根和氫氧根離子作為脫附劑,探討底渣吸附是否具有重複使用的可能性。
本研究所使用之染料為甲基藍,由吸附實驗可知高嶺土和活性碳對於甲基藍有相當良好的吸附特性,在各溫度和酸鹼環境下皆趨近於偵測極限,底渣則是在35℃下有較快的吸附速率,三種不同溫度對於最大吸附量並無太大影響,酸鹼環境的變化結果亦同,皆趨近於1.25 mg/g。MB脫附實驗則是在25℃以磷酸根脫附條件下有最佳的脫附量0.08 mg/g,但脫附之效果並不如預期。本研究所使用之重金屬為銅,活性碳對銅依然有相當好的吸附能力,單位吸附量大於5 mg/g而高嶺土對銅之吸附效果則不佳約2.3 mg/g。底渣在pH4下對於銅有吸附的行為,最大吸附量約為4 mg/g,溫度並無太大影響。脫附實驗則是在35℃以磷酸根脫附環境下有較佳之脫附結果,脫附量約為0.45 mg/g,但脫附效果依然不如預期。本研究使用Freundlich/Langmuir模式來模擬等溫實驗,並使用零階、一階、二階、假一階、假二階模試模擬動力實驗,由等溫模式模擬結果可知Freundlich有高相關係數(R2=0.99以上),較適用於本研究之吸附行為。底渣動力實驗則以零階適合模擬吸附銅(Δq=2.89%),一階適合模擬MB(Δq=0.47%)。由實驗證明底渣對於水溶液中染劑和重金屬具有一定程度之去除效率但是對於底渣的再生性則不佳,重複使用之並實用性不高。

Incineration is the most common way for municipal solid waste treatment, but the bottom ash is also a great problem after the incineration. The previous research indicates that bottom ash has the ability for the removal of methylene blue via adsorption process. In this study, bottom ash with Kaolin and Activated Carbon were compared to the adsorption ability to MB and copper. In addition, phosphate and hydroxyl were used as the desorbent to check if bottom ash can be regenerated.
Freundlich and Langmuir models were used in this study as isotherm model to analyze the data and the result showed that Freundlich described well for most of the adsorption and desorption condition.
Kaolin and activated carbon showed the great adsorption ability of MB while bottom ash is not that well. In the copper adsorption experiment, activated carbon still has the best adsorption capacity(above 5 mg/g) while bottom ashis the second (4.8 mg/g) and kaolin almost doesn`t adsorp well(2.3 mg/g).
In the desorption study, both of the adsorbent are incapable to desorp by both desorbent agents. All the data reveal that the desorption amount in both MB and cupper are lower than 10%, indicating bottom ash is incapable for regeneration in this case.
URI: http://hdl.handle.net/11455/5722
其他識別: U0005-0106201012112900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.