Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.advisorChih-Jen Luen_US
dc.contributor.authorLee, Meng-Hsien_US
dc.identifier.citation行政院勞委會(2009)化學品全球調合制度(GHS) 行政院勞委會(1997)應用非侵入性生物指標方法檢測四氯乙烯職業暴露程度 行政院環保署(2010)土壤及地下水污染整治網 行政院環保署(2008)“毒災應變諮詢中心之防救手冊”。 行政院環保署(2008)土壤酸鹼值測定方法—電極法(NIEA S410.62C)。 行政院環保署(2002)土壤水份含量測定方法—重量法(NIEA S280.61C)。 行政院環保署(2001)土壤及地下水污染整治法之地下水污染管制標準 行政院環保署(2000)水中總有機碳檢測方法—燃燒/紅外線測定法(NIEA W530.51C)。 王智澤(1990)“地下水延散係數之推估研究” 碩士論文,國立中興大學土木工程研究所,台中。 李世偉(2005)“以厭氧生物法處理高濃度四氯乙烯之研究” 碩士論文,國立台灣大學環境工程研究所,台北。 陳家政(2004)“以上流式厭氧污泥床處理四氯乙烯之研究” 碩士論文,國立中興大學環境工程研究所,台中。 莫展民, M. Zhang, and S. D. Warner(2005)“滲透性反應牆在地下水處理上的應用” 台灣土壤及地下水環境保護協會簡訊,第 15 期,第 7-10 頁。 陳智彥(2006)“生物固體物與奈米零價鐵對受三氯乙烯污染土壤及地下水中厭氧生物分解之研究” 碩士論文,國立中興大學環境工程研究所,台中。 程郁璁(2005)“厭氧生物處理四氯乙烯代謝機制及菌相之探討” 碩士論文,國立中興大學環境工程研究所,台中。 董瑞安(2000)“受氯化碳氫化合物污染地下水階段式生物復育方法評估模式研發” 國科會專題研究計劃,國立清華大學原子科學系,新竹。 蔡國聖,王夣熊,朱振坤,江山鑫(2009)“以生物方法處理受 TPH 污染土壤之效率評估分析” 基隆市環境保護局。 盧至人(2002)“現地生物復育技術” 台灣土壤及地下水環境保護協會簡訊,第 5 期,第 79-86 頁。 盧至人(1997)“地下水的污染整治” 國立編譯館,台北。 經濟部工業局(2008)“含氯碳氫化合物土壤及地下水污染預防與整治技術手冊”。 經濟部水利署(2010)地下水觀測網 Aeppli, C., T. B. Hofstetter, H. I. F. Amaral, R. Kipfer, R. P. Schwarzenbach, and M. Berg(2010)“Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances” Environmental Science and Technology 44: 3705-3711 Adamson, D. T., J. M. Mcdade, and J. B. Hughes(2003)“Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE” Environmental Science and Technology 37: 2525-2533 Aulenta, F., M. Majone, and V. Tandoi(2006)“Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions” Journal of Chemical Technology and Biotechnology 81: 1463-1474 Aulenta, F., S. Rossetti, M. Majone, and V. Tandoi(2004)“Detection and quantitative estimation of Dehalococcoides spp. in a dechlorinating bioreactor by a combination of Fluorescent In Situ Hybridization(FISH)and kinetic analysis” Applied and Environmental Microbiology 64: 206-212 Azizian, M. F., I. P. G. Marshall, S. Behrens, A. M. Spormann, L. Semprini(2010)“Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column” Journal of Contaminant Hydrology 113: 77-92 Batterman S., A. Kulshrestha, and H. Y. Cheng(1995)“Hydrocarbon vapor transport in low moisture soil” Environmental Science and Technology 29: 171-180 Behrens, S., M. F. Azizian, P. J. McMurdie, A. Sabalowsky, M. E. Dolan, L. Semprini, and A. M. Spormann(2008)“Monitoring abundance and expression of Dehalococcoides species chloroethene-reductive dehalogenases in tetrachloroethene-dechlorinating flow column” Applied and Environmental Microbiology 74: 5695-5703 Boga, H. I., R. Ji, W. Ludwig, and A. Brune(2007)“Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic firmicute from the intestinal tract of a soil-feeding termit” Archives of Microbiology 187: 15-27 Boon, N., J. Goris, P. D. Vos, W. Verstraete, and E. M. Top(2000)“Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp” Applied and Environmental Microbiology 66: 2906-2913 Brodkin, C. A., W. Daniell, and H. Checkoway(1995)“Hepatic ultrasonic changes in workers exposed to perchloroethylene” Occupational and Environmental Medicine 52: 679-685 Broholm, K., S. Feenstra, and J. A. Cherry(2005)“Solvent release into a sandy aquifer. 2. estimation of DNAPL mass based on a multiple-component dissolution model” Environmental Science and Technology 39: 317-324 Cabirol, N., J. Perrier, F. Jacob, B. Fouillet, and P. Chambon(1996)“Role of methanogenic and sulfate-reducing bacteria in the reductive dechlorination of tetrachloroethylene in mixed culture” Bulletin of Environmental Contamination and Toxicology 56: 817-824 Callia, B., B. Mertoglua, K. Roestb, and B. Inancc(2006)“Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate” Bioresource Technology 97: 641-647 Chen, G. (2004)“Reductive dehalogenation of tetrachloroethylene by microorganisms: current knowledge and application strategies” Applied and Environmental Microbiology 63: 373-377 Cobos-Vasconcelos, D. D. L., F. Santoyo-Tepole, C. Juárez-Ramírez, N. Ruiz-Ordaz, and C. J. J. Galíndez-Mayer(2006)“Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture” Enzyme and Microbial Technology 40: 57-60 Cupples, A. M., A. M. Spormann, and P. L. McCarty(2004)“Comparative evaluation of chloroethene dechlorination to ethane by Dehalococcoides-like microorganisms” Environmental Science and Technology 38: 4768-4774 Daprato, R. C., F. E. Löffler, and J. B. Hughe(2007)“Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy” Environmental Science and Technology 41: 2261-2269 DeBruin, W. P., M. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder(1992)“Complete biological reductive transformation of tetrachloroethene to ethane” Applied and Environmental Microbiology 58: 1996-2000 Dejonghe, W., N. Boon, D. Seghers, E. M. Top, and W. Verstraete(2001)“Bioaugmentatio of soils by increasing microbial richness: missing links” Environmental Science and Technology 3: 649-657 Dorigo, U., L. Volatier, and J. F. Humbert(2005)“Molecular approaches to the assessment of biodiversity in aquatic microbial communities” Water Research 39: 2207-2218 Dybas, M. J., D. W. Hyndman, R. Heine, J. Tiedje, K. Linning, D. Wiggert, T. Voice, X. Zhao, L. Dybas, and C. S. Criddle(2002)“Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation” Environmental Science and Technology 36: 3635-3644 Egli, C., R. Tschan, A. M. Cook, and T. Leisinger(1987)“Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp.”FEMS Microbiology Letters 43: 257-261 El Fantroussi, S., M. Belkacemi, E. M. Top, J. Mahillon, H. Naveau, and S. N. Agathos(1999)“Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies” Environmental Science and Technology 33: 2992-3001 El Fantroussi, S. and S. N. Agathos(2005)“Is bioaugmentation a feasible strategy for pollutant removal and site remediation ? ” Ecology and Industrial Microbiology 8: 265-275 Fathepure, B. Z., J. P. Nengu, and S. A. boyd(1988)“Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM” Applied and Environmental Microbiology 54: 2976-2980 Fathepure, B. Z., J. P. Nengu, and S. A. Boyd(1987)“Anaerobic bacteria that dechlorinate perchloroethene” Applied and Environmental Microbiology 53: 2671-2673 Freedman, D. L. and J. M. Gossett(1989)“Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions” Applied and Environmental Microbiology 55: 2144-2151 Gee, G. W. and J. W. Bauder(1986)“Particle size analysis” p. 383–411. In A. Klute (ed.)Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. Gennari, P., M. Naldi, and R. Motta(1992)“γ-Glutamyltransferase isozyme pattern in workers exposed to tetrachloroethylene” America Journal of Industrial Medicine 21: 661-671 Gerritse, J., O. Drzyzga, G. Kloetsra, M. Keijmel, L. P. Wiersum, and R. Hutson(1999)“Influence of different eletron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1” Applied and Environmental Microbiology 65: 5212-5221 Gerritse, J., T. M. P. Gomes, and P. A. Lawson(1996)“Desulfitobacterium sp. strain-PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols” Archives of microbiology 165: 132-140 Gossett, J. M.(1987)“Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons” Environmental Science and Technology 21: 202-208 Griffin, B. M., J. M. Tiedje, and F. E. Löffler(2004)“Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene” Environmental Science and Technology 38: 4300-4303 Guiot, S. R., R. Cimpoia, R. Kuhn, and A. Alaplantive(2008)“Electrolytic methanogenic-methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept” Environmental Science and Technology 42: 43011-3017 Haston, Z. C. and P. L. McCarty(1999)“Chlorinated ethane half-velocity coefficients(Ks)for reductive dehalogenation” Environmental Science and Technology 33: 223-226 He, J., K. M. Ritalahti, K. L. Yang, S. S. Koenigsberg, and F. E. Loffler(2003)“Detoxification of vinyl chloride to ethane coupled to growth of an anaerobic bacterium” Nature 424: 62-65 He, J., Y. Sung, R. Krajmalinik-Brown, K. M. Ritalahti, and F. E. Loffler(2005)“Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene and 1,2-dichloroethene-respiring anaerobe” Environmental Microbiology 7: 1442-1450 Hedlund, B. P., J. J. Gosink, and J. T. Staley(1996)“Phylogeny of Prosthecobacter, the fusiform Caulobacters: members of a recently discovered division of the bacteria” International Journal of Systematic Bacteriology 46: 960-966 Hendrickson, E. R., J. A. Payne, R. M. Young, M. G. Starr, M. P. Perry, S. Fahnestock, D. E. Ellis, and R. C. Ebersole(2002)“Molecular analysis of Dehalococcoides 16S ribosomal DNA from chlororthene-contaminated sites throughout north America and Europe” Applied and Environmental Microbiology 68: 485-495 Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B. Zehnder(1993)“A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth” Applied and Environmental Microbiology 59: 2991-2997 Holliger, C., G. Wohlgstyh, and G. Diekert(1999)“Reductive dechlorination in the energy metabolism of anaerobic bacteria” FEMS Microbiology Reviews 22: 383-198 Hunkeler, D., B. M. V. Breukelen, and M. Elsner(2009)“Modeling chlorine isotope trends during sequential transformation of chlorinated ethenes” Environmental Science and Technology 43: 6750-6756 Hunt, J. T., N. Sitar, and K. S. Udell (1988)“Nonaqueous phase liquid transport and cleanup, 2. experimental studies” Water Resources Research 24: 1259-1267 John, M., R. Rubick, R. P. H. Schmitz, J. Rakoczy, T. Schubert, and G. Diekert(2009)“Retentive memory of bacteria: long-term regulation of dehalorespiration in Sulfurospirillum mutivorans” Journal of Bacteriology 191: 1650-1655 Jurkevitch, E., D. Minz, B. Ramati, and G. Barel(2000)“Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria” Applied and Environmental Microbiology 66: 2365-2371 Krumholz, L. R.(1997)“Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors” International Journal Systematic and Evolutionary Microbiology 47: 1262-1263 Krumme, M. L., K. N. Timmis, and D. F. Dwyer(1993)“Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms” Applied and Environmental Microbiology 59: 2746-2749 Lapara, T. M., C. H. Nakatsu, L. M. Pantea, and J. E. Alleman(2001)“Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development” Water Research 35: 4417-4425 Lendbay, J. M., F. E. Löffler, M. Dollhopf, M. R. Aiello, G. Daniels, B. Z. Fathepure, M. Gebhard, R. Heine, R. Helton, J. Shi, R. Krajmalnik-Brown, C. L. Major, JR., M. J. Barcelona, E. Petrovskis, R. hickey, J. M. Tiedje, and P. Adriaens(2003)“Bioreactive barriers: a comparison of bioaugmentation and biostimulation for chlorinated solvent remediation” Environmental Science and Technology 37: 1422-1431 Löffler, F. E., Q. Sun, J. Li, and J. M. Tiedje(2000)“16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species” Applied and Environmental Microbiology 66: 1369-1374 Macbeth, T. W., D. E. Cummings, S. Spring, L. M. Petzke and K. S. Sorenson(2004)“Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep fractured basalt aquifer and comparison to a derivative laboratory culture“ Applied and Environmental Microbiology 70: 7329-7341 Madigan, M. T. and J. M. Martinko(2006)“Biology of microorganisms“ Pearson Ptentice Hall, New Jersey Maidak, B., J. Cole, T. Lilburn, C. J. Parker, P. Saxman, R, Farris, G. Garrity, G. Olsen, T. Schmidt, and J. Tiedje(2001)“The RDPⅡ(Ribosomal Database Project)” Nucleic Acid Research 29: 173-174 Major, D. W., M. L. Mcmaster, E. E. Cox, E. A. Edwards, S. M. Dworatzek, E. R. Hendrickson, M. G. Starr, J. A. Payne, and L. W. Buonamici(2002)“Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene” Environmental Science and Technology 36: 5106-5116 MaymÓ-Gatell, X., Y. Chien, J. M. Gossett, and S. H. Zinder(1997)“Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane” Science 276: 1568-1571 McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. E. Dolan, J. P. Allan, B. T. Kawakami, and T. J. Carrothers(1998)“Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection” Environmental Science and Technology 32: 88-100 Miller, E., G. Wohlfarth, and G. Diekert(1997)“Comparative studies on tetrachloroethene reductive dechlotination mediated by Desulfitobacterium sp. strain PCE-S” Archives of Microbiology 168: 513-519 NCI(National Cancer Institute)(1977)“Bioassay of tetrachloroethylene for possible carcinogenicity” Washington, DC, US Govt. printing office(NCI-CG-TR-13). DHEW Publ. No.(NIH)77-813 Nielsen, R. B. and J. D. Keasling(1999)“Reductive dechlorination of chlorinated ethene DNAPLs by a culture enriched from contaminated groundwater” Biotechnology and Bioengineering 62: 160-165 Nyer, E., F. Lenzo, and J. Burdick(1998)“In Situ reactive zones: dehalogenation of chlorinated hydrocarbons” Groundwater Monitoring Review: spring Ogata, A. and R. B. Banks(1961)“A solution of the differential equation of longitudinal dispersion in porous media” U.S. Geological Survey Professional Paper 411-A Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace(1986)“Microbial ecology and evolution: a ribosomal RNA approach” Annual Review of Microbiology 40: 337–365 Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen(1986)“The analysis of natural microbial populations by ribosomal RNA sequences” Advances in Microbial Ecology 9: 1–55 Pelletier, E., A. Kreimeyer, S. Bocs, Z. Rouy,G. Gyapay, R. Chouari, D. Riviere, A. Ganesan, P. Daegelen, A. Sghir, G. N. Cohen, C. Medigue, J. Weissenbach, and D. L. Paslier(2008)“Candidatus Cloacamonas Acidaminovorans: Genome sequence reconstruction provides a first glimpse of a new bacterial division” Journal of Bacteriology 190: 2572-2579 Philip, B., H. S. Rifai, and C. J. Newell(1999)“Ground water contamination” Prentice Hall PTR., USA. Pooley, K., M. Blessing, T. C. Schmidt, S. B. Haderlein, K. T. B. Macquarrie and H. Prommer(2009)“Aerobic biodegradation of chlorinated ehtenes in agractured bedrock aquifer: quantitative assessment by compound-specific isotope analysis(CSIA)and reactive transport modeling” Environmental Science and Technology 43: 7458-7464 Quinn, J., C. Geiger, C. Clausen, K. Brooks, C. Coon. S. O’Hara, T. Krug, D. Major, W. S. Yoon, A. Gavaskar, and T. Holdsworth(2005)“Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron” Environmental Science and Technology 39: 1309-1318 Richardson, R. E., V. K. Bhupathiraju, D. L. Song, T. A. Goulet, and L. Alvarez-Cohen(2002)“Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques” Environmental Science and Technology 36: 2652-2662 Rivett, M. O., S. W. Chapman, R. M. Allen-King, S. Feenstra, and J. A. Cherry(2006)“Pump-and-treat remediation of chlorinated solvent contamination at a controlled field-experiment site” Environmental Science and Technology 40: 6770-6781 Robert, P. V., M. N. Goltz, and D. M. Mackay(1986)“A natural gradient experiment on solute transport in a sand aquifer retardation estimates and mass balances for organic solutes” Water Resources Research 22: 2047-2058 Rothmel, R. K., R. W. Peters, E. S. T. Martin, and M. F. Deflaun(1998)“Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs” Environmental Science and Technology 32: 1667-1675 Saillenfait, A. M., I. Langonne, and J. P. Sabate(1995)“Developmental toxicity of the trichloroethylene, tetrachloroethylene and four of their metabolites in rat whole embryo culture” Archives of Toxicology 70: 71-82 Sanz, J. L. and T. Köchling(2007)“Molecular biology techniques used in wastewater treatment: an overview” Process Biochemistry 42: 119-133 Scheutz, C., N. D. Durant, P. Dennis, M. H. Hansen, T. Jorgensen, R. Jakobsen, E. E. Cox, and P. Bjerg(2008)“Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during and enhanced reductive dehchlorination field demonstration” Environmental Science and Technology 42: 9302-9309 Scholz-Muramatsu, H., Aneumann, M. Messmer, E. Moore, and G. Diekert(1995)“Isolation and characterization of Dehalospirillum multivorans gen .nov., sp. nov., a aetrachloroethene-utilizing, strictly anaerbic bacterium” Archives of microbiology 163: 48-56 Seshadri, R., L. Adrian, D. E. Fouts, J. A. Eisen, A. M. Phillippy, B. A. Methe, N. L. ward, W. C. Nelson, R. T. Deboy, H. M. Khouri, J. F. Kolonay, R. J. Dodson, S. C. Daugherty, L. M. Brinkac, S. A. Sullivan, R. Madupu, K. E. Nelson, K. H. Kang, M. Impraim, K. Tran, J. M. Robinson, H. A. Forverger, C. M. Fraser, S. H. Zinder, J. F. Heidelberg(2005)“Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes” Science 307: 105-108 Sharma, P. K. and P. L. McCarty(1996)“Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene” Applied and Environmental Microbiology 62: 761-765 Steffan, R. J., K. L. Sperry, M. T. Walsh, S. Vainberg, and C. W. Condee(1999)“Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater” Environmental Science and Technology 33: 2771-2781 Sung, Y., K. M. Ritalahti, T. A. Sanford, J. W. Urbance, S. J. Flynn, J. M. Tiedje, and F. E. Löffler(2003)”Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov.” Applied and Environmental Microbiology 69: 2964-2974 Suyama, A., R. Iwakiri, K. Kai, T. Tokunaga, N. Sera, and K. Furukawa(2001)”Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes” Bioscience, Biotechnology, and Biochemistry 65: 1474-1481 USEPA(2000)”Engineered approach to in situ bioremediation of chlorinated solvents: fundamental and field applications” EPA 542-R-00-008 USEPA(1994)” How to evaluate alternative cleanup technologies for underground storage tank sites-a guide for corrective action plan reviewers” EPA 510-B-94-003 Verplanke, A. J., M. H. Leummens, and R.F. Herber(1999)”Occupational exposure to tetrachloroethylene and its effects on the kidneys” Occupational and Environmental Medicine 41: 11-16 Volkel, W., M. Friedewald, and E. Lederer(1998)“Biotransformation of perchloroethene: dose-dependent excretion of trichloroacetic acid, dichloroacetic acid, and N-acetyl-S-(trichlorovinyl)-L-cysteine in rats and humans after inhalation” Toxicology and Applied Pharmacology 153: 20-27 Woese, C. R.(1978)“Bacterial evolution” Microbiology Review 51: 211-271 Yang, Y. and J. Zeyer(2003)“Specific detection of dehalococcoides species by Fluorescence In Situ Hybridization with 16S rRNA-targeted oligonucleotide probes” Applied and Environmental Microbiolog 69: 2879-2883 Ziagova, M. and M. Liakopoulou-Kyriakides(2007)“Kinetics of 2,4-dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. cultures in the presence of glucose” Chemosphere 68: 921-927zh_TW
dc.description.abstract本研究藉由砂箱填充實場土壤,模擬四氯乙烯污染之飽和含水層,並以生物添加法植種具有完全脫氯能力之 M524 厭氧混合菌群,期望達成生物復育效果。 批次試驗顯示,現地菌於四十天內僅能將四氯乙烯脫氯降解至順-二氯乙烯,而 M524 於四氯乙烯降解過程中,無氯乙烯的累積即有乙烯的生成;此外,四氯乙烯與順-二氯乙烯還原脫氯皆為一階動力反應,但順-二氯乙烯脫氯速率(0.011 day-1)低於四氯乙稀(0.054 day-1),故順-二氯乙烯的代謝為四氯乙烯生物降解之速率限制步驟。 追蹤劑試驗顯示,含水層地下水流速(0.23 m/day)相較於實場偏快,使四氯乙烯的水動力延散以機械延散為主,而深層含水層水力傳導度較佳,使基質初始濃度較高,甲烷生成量較大,但隨流經距離的延長,可被利用基質驟減,造成上游端甲烷化情形較為明顯,至下游端甲烷生成速率便有減緩趨勢。 生物刺激階段,現地菌 Geobacter sp. 可將四氯乙烯脫氯成順-二氯乙烯, Comamonas testosteroni 亦可共代謝順-二氯乙烯,使四氯乙烯(3.9 mg/L)於含水層上游端即有 99 % 去除率,局部區域甚至低於地下水管制標準,且順-二氯乙烯生成曲線與甲烷生成曲線相似,顯示四氯乙烯的降解伴隨大量甲烷的生成與順-二氯乙烯的累積。生物添加階段,含水層有微量乙烯的產生,但降解副產物以順-二氯乙烯為主,因甲烷化反應顯著,現地菌 Sporotalea propionica 等能以氫氣為能源,故僅低比例之氫氣做為四氯乙烯還原性脫氯作用之電子供給者,顯示當外加菌適應現地環境後,應可使含水層具有完全脫氯能力。zh_TW
dc.description.tableofcontents摘要 IV Abstract V 目錄 VII 圖目錄 X 表目錄 XII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 四氯乙烯之相關介紹 4 2-1-1 四氯乙烯之物理化學特性 4 2-1-2 四氯乙烯之毒性 4 2-1-3 四氯乙烯於飽和含水層中之傳輸特性 8 2-2 四氯乙烯之生物性還原脫氯作用 11 2-2-1 共代謝(Cometabolism) 11 2-2-2 脫鹵呼吸作用(Dehalorespiration) 12 2-2-3 序列性還原脫氯作用 15 2-3 四氯乙烯還原性脫氯之微生物族群 17 2-4 分子生物技術於環境微生物之應用 20 2-4-1 16S rDNA 20 2-4-2 聚合酶連鎖反應 22 2-4-3 瓊脂糖凝膠電泳 22 2-4-4 變性梯度凝膠電泳 25 2-5 土壤與地下水之現地生物復育技術 28 2-5-1 直接注入系統(Direct injection) 28 2-5-2 地下水循環系統(Groundwater recirculation) 30 2-5-3 滲透性反應牆(Permeable reactive barrier) 30 2-5-4 生物通氣法(Bioventing) 33 2-5-5 生物刺激法與生物添加法 35 第三章 材料與方法 36 3-1 研究架構 36 3-2 儀器設備 38 3-2-1 氣相層析儀 38 3-2-2 高效能液相層析儀 38 3-2-3 液態總有機碳分析儀 38 3-2-4 其他儀器設備 38 3-3 實驗藥品與材料 41 3-4 實驗方法 45 3-4-1 前置作業 45 3-4-2 建立砂箱 45 3-4-3 追蹤劑試驗 45 3-4-4 進流基質與營養鹽 47 3-4-5 添加四氯乙烯 47 3-4-6 植種M524 47 3-4-7 生物降解批次實驗 47 3-5 土壤性質分析 52 3-5-1 土壤有機質之分析 52 3-5-2 土壤含水率之分析 52 3-5-3 土壤質地之分析 52 3-5-4 土壤pH之測定 53 3-6 水質分析 54 3-6-1 氯乙烯類化合物之分析 54 3-6-2 甲烷、乙烯及氯乙烯之分析 56 3-6-3 醋酸鈉之分析 56 3-6-4 總有機碳之分析 59 3-7 菌相分析 60 3-7-1 螢光原位雜合 60 3-7-2 DNA之萃取 63 3-7-3 聚合酶連鎖反應 63 3-7-4 瓊脂凝膠電泳 67 3-7-5 變性梯度凝膠電泳 67 3-7-6 親緣分析 70 第四章 結果與討論 71 4-1 四氯乙烯生物降解批次試驗 71 4-1-1 現地組(soil with PCE) 71 4-1-2 植種組(soil with PCE and M524; M524 with cDCE) 75 4-1-3 降解速率常數的探討 79 4-2 模擬含水層背景描述 84 4-2-1 砂箱實驗設計 84 4-2-2 土壤基本性質 84 4-2-3 水文特性 87 4-2-4 模擬含水層的操作 93 4-3 模擬含水層中的微生物族群結構 96 4-3-1 未受污染階段 96 4-3-2 生物刺激階段 100 4-3-3 生物添加階段 103 4-3-4 總菌數與脫氯球菌偵測 106 4-4 模擬含水層中四氯乙烯之生物降解 109 4-4-1 未受污染階段 109 4-4-2 生物刺激階段 112 4-4-3 生物添加階段 118 4-4-4 四氯乙烯降解轉換的回收率探討 123 4-4-5 現地污染場址之應用 125 第五章 結論與建議 126 5-1 結論 126 5-2 建議 128 參考文獻 129zh_TW
dc.titleEffects of Bioaugmentation on PCE-Contaminated Aquifer: A Sandbox Studyen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.