Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5731
標題: 隔膜電解法產製二氧化氯之研究
Study on the production of chlorine dioxide by membrane electrolysis method
作者: 楊佳霖
Yang, Chia-Lin
關鍵字: chlorine dioxide;二氧化氯;electrochemical technology;sodium chlorite;disinfect ion by-products;電化學程序;亞氯酸鈉;消毒副產物
出版社: 環境工程學系所
引用: 刁淑華 (1993),高級氧化預處理對自來水含氯有機物生成之影響,台大環工所碩士論文,台北。 林世豪、吳俊哲、吳志超 (2005),二氧化氯應用在淨水程序中對有機物之去除探討-模廠試驗,第二屆海峽兩岸飲用水安全控制技術及管理研討會,第159-162 頁。 許勝聖 (1996),以二氧化氯為替代消毒劑時其生成控制及消毒效率之研究,國立中興大學環境工程研究所,碩士論文,台中市。 張怡怡, (1996). 飲用水中無機物、微生物及濁度管制項目及管制標準之合理性分析. EPA-85-J102-09-05, 行政院環境保護署委託研究報告.台北醫學院。 張懿文、吳志超、黃文鑑 (2005),二氧化氯預氧化對混凝程序去除天然有機物及濁度效率影響之研究,中華民國環境工程學會 第三十屆廢水處理技術研討會。 黃志彬 (2002),提升傳統淨水處理程序效能之研究-鳳山場內模型廠試驗研究,第一年計畫,台灣省自來水公司期末報告,第2.6-2.11頁。 施宜珍 (1996),以二氧化氯為替代消毒劑時其副產物生成與控制之研究,國立中興大學環境工程研究所,碩士論文,台中市。 董榮彰 (2005),電解法生產二氧化氯原型機之開發與效益評估,屏東科技大學食品系碩士論文,屏東,第40 – 43 頁。 顧洋, (1996). 臭氧處理在淨水工程上之應用. 中華民國自來水協會會刊. 第15卷, 第三期, 第32-38頁。 劉明哲、賴政國、盧明俊、陳重男 (2003),二氧化氯氣液滅菌效能研究,第二十八屆廢水技術研討會。 AWWA Research Foundation (1992). Use of Alternative Disinfectants, Chlorination By-Products: Production and Control. pp.174-188. Amy, G.L., Debroux, J. Sinha, S. Brandhuber P. and Chao J., (1998). Occurrence of Disinfection By-Products(DBPs) Precursors in Source Waters and DBPs in Finished Waters. The 4th International Workshop on Drinking Water Quality Management and Treatment Technology, pp.59-70. Akin E.W., Hoff J.C., Lipp Hoff J.G., Lalezary S., Pirbazari M. and McGuire M.J., (1984)., Oxidation of taste and odor compounds, AWWA Ann., Conf., Dallas, Texas. Aieta, E.M. and Berg, J.D. (1986). A Review of Chlorine Dioxide in Drinking Water Treatment. J. AWWA. Vol.78, No.6, pp.62-73. Condie L.W., (1986). Toxicological problems associates with chlorine dioxide, J. AWWA, Vol. 78, No. 4, pp.156-162. Craun G.F., Bull R.T., Clark R.M., Doull J., Grabow W., Marsh G.M.,Okun D.A., Regli S., Sobsey M.D. and Symons J.M., (1994).Balancing chemical and microbial risks of drinking water disinfection,Part. Benfits and Potential Risks, J. Water SRT-Aqua.,43(4): pp.192-199. Gordon G., (2001). Is all chlorine dioxide created equal?, J. AWWA.,Vol.94, pp.163-174. Gagnon G.A., Rand J.L., O’Leary K.C., Rygel A.C., Chauret C., Andrews R.C., (2005). Disinfectant efficacy of chlorite and chlorine dioxide in drinkingwater biofilms, Water Res, Vol. 39, pp.1809-1817. Henry B. and Savas K., (2005). The formation of chlorine dioxide in theelectrochemical treatment of drinking water for disinfection, J. Electrochimica Acta, Volume: 50, Issue: 25-26, pp.5218-5228. Hoehn R.C. (1992). Chlorine dioxide use in water treatment: key issues. Conference proceedings, Chlorine Dioxide: Drinking Water Issues: Second International Symposium Houston, TX. Joseph P. W and Blair Martin G., (2009). Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis, J. Hazardous Materials, Vol: 164, pp.1640-1467 Katz, A. and Narkis, N., (1994). Disinfection of Effluent by Combinations of Equal Doses of Chlorine Dioxide and Chlorine Added Simultaneously Over arying Contact Times. Water Res. Vol.28, No.10, pp.2133-2138. Masschelein, W.J., (1979). Chlorine Dioxide: Chemistry and Environment Impact of Oxychlorine Compounds. Ann Arbor Science. Ann Anbor, MI. Monk, P.,(2001)Fundamentals of Electroanalytical Chemistry, John Wiley&Sons, New York. Narkis N., Katz A., Orshansky F., Kott Y. and Friendl Y., (1995). Disinfection of effluents by combinations in chlorine dioxide and chlorine, Wat. Sci. Tech., Vol.31, No.5, pp.105-114. Pillai, K.C., Tae, O.K., Bo, B.P., Il, S.M., (2008). Studies on process parameters for chlorine dioxide production using IrO2 anode in an un-divided electrochemical cell, J. Hazardous Materials. Prentice G., (1991). Electrochemical engineering principles, Prentice Hall, Englewood Cliffs, U.S.A., pp.258-259. Rav-Acha, C., (1984). Disinfection of Drinking Water Rich in Bromide with Chlorine and Chlorine Dioxide, while Minimizing the Formation of Undesirable By-Products. Water Res. Vol.17, pp.611-621. Ringer W.C., and Campbell S.J., (1995). Use of chlorine dioxide for alage control at philadelphia, J. AWWA., pp.47:740. Susan, D.F. and Gerard D.K., (1995). Chlorine Dioxide: Problems of Analysis. Water Supply. Vol.13, No.2, pp.83-92. Singer, P.C., (1989). Complying with Trihalomethane Reduction Requirements in Water Treatment Facilities. Noyes Data Corporation, Park Ridge, New Jersey, USA. Stevens, A.A., C.J. Slocum, D.R. Seeger and G.G. Rebeck, (1976). Chlorination of Organics in Drinking Water. J. AWWA. Vol.68, No.11, pp.615-620. Symons J. M., (1979) Ozone, chlorine dioxide and chloramines as alternatives to chlorine for disinfection of drinking water. In water chlorination: environmental impact and health effects, Vol.2 (R.L.Jolley et al, eds)Ann Arbor Sci. Publ., Ann Arbor, Mich. Trussell R.R., and Umphres M.D., (1978). The formation of trihalomethanes, J. AWWA., 70(11):pp.604-612. US.EPA., (1999). Guidance manual alternative disinfectants and oxidants: 4. Chlorine Dioxide”, USEPA 815-R-99-014. White, G.C., (1992). The Handbook of Chlorination and Alternative Disinfectants. 3rd ed., Van Nostrand Reinhold Company, New York, pp.150-151.
摘要: 
目前許多歐美國家淨水廠已將二氧化氯(Chlorine Dioxide,ClO2)做為消毒程序之用藥,主要因為二氧化氯消毒效能甚佳並對消毒副產物能有效控制。由於國內並無針對二氧化氯之使用及分析有明確規範及標準方法,且台灣原水水質特性的不同,其應用於淨水程序上尚屬研究階段,因此至今亦無將其應用於淨水程序中消毒用的實例。有鑒於未來食品、醫療及環境用藥等消毒使用,有越來越多使用二氧化氯趨勢,故國內外已有許多相關製備、應用等研究成果;其中國內多數研究皆注重於二氧化氯應用實例,而國外除了應用面外已有相關產製專利。以製備二氧化氯而言,大多數之研究皆著重於以電化學程序來操作進行,該程序有用藥簡單、純度高及可連續產出使用等優勢。本研究主要是探討槽體內不同電解液組成分對二氧化氯產出情形之影響。
研究結果發現電解操作過程中,當開始調升電壓時,槽體內電流溫度方面也開始有升高的情形,並且二氧化氯也有開始產出情形,當在陰極室內添加不同濃度的NaOH時,隨著其濃度的增加,也加速了系統的反應速率,尤其是以添加NaOH 0.5%為最佳的濃度,陽極室隨著NaCl的增加,產出濃度也隨之增加,以NaCl 10%為較佳添加量。在陽極室內主成份為NaCl電解液開始添加不同亞氯酸鈉(NaClO2),有助於提高ClO2的純度及濃度,且隨著加入之NaClO2濃度的提高,ClO2的純度及濃度亦隨之上升,如以二氧化率為最佳產能為目標,以NaCl 2%及NaClO2 6%兩者混合為陽極電解液時,於12V電解20分鐘後可得濃度302.01 mg/L、純度91%之ClO2溶液。調整不同起始pH時,在中性及鹼性下並不會造成ClO2產出之影響,酸性條件下會使ClO2提早產出。
綜合目前研究可知,產製ClO2發現NaClO2的添加的確有助於ClO2的產出,唯設備及操作條件部份尚有相當大的改善空間,因此電化學裝置仍具有一定程度技術可行性及發展潛力。

Chlorine dioxide (ClO2) is potentially a powerful disinfectant for water treatment. It is widely used in public water system to treat potable water since it provides less disinfection by-products than chlorine. Today there are no guideline and analysis method for ClO2 in Taiwan yet. In the future, the ClO2 will be more and more widely used as a disinfectant for potable water, food, medicine, environment and so forth. Many researches relating manufacture and application have been studied in the world. Although increased attention has been paid for on-line chlorine dioxide generation by several chemical and electrochemical methods, the details are mostly confined as patents. Lately, the novel electrochemistry technology for ClO2 production has the advantage of high purity, simple dosing and continuous operating on-site. Furthermore, many increasing interests of wastewaters are treated by electrochemistry. This study is focused on the effect of different electrolyte on ClO2 production.
The results were obtained in the electrolysis operation process. It was found the dissolved gas ClO2 produced in the solution was increased, when the cell voltage continuously increased with increasing in the current and temperature. When the NaOH concentration was increased, the ClO2 produced in the solution was fast. The optimum concentration is NaOH 0.5%. As can be observed, electrochemically generated ClO2 concentration increased gradually with a tendency for saturation, when NaCl concentration in the bulk solution was increase. The optimum concentration is NaCl 10%. Moreover, when producing the ClO2 solution with a Venturi injector in the mixed anolyte of NaCl and sodium chlorite(NaClO2), the concentration and the purity of ClO2 were proportional to the initial NaClO2 concentration in the anolyte. It indicated that the maximum concentration and purity of ClO2 solution achieved 302.01 mg/L and 91 %, respectively, in the mixed anolyte of 2 % NaCl and 6 % NaClO2.It was also observed the feed solution was acidic condition and the ClO2 production was ahead of time.
It can be concluded that a great removal in sanitary sewage treatment and a maximum production of ClO2 could be achieved by the electrochemistry technology.
URI: http://hdl.handle.net/11455/5731
其他識別: U0005-0806201014301900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.