Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorMing-Yen Weyen_US
dc.contributorChung-sying Luen_US
dc.contributorYou-Im Changen_US
dc.contributorHsing-Lung Lienen_US
dc.contributorHui-Hsin Tsengen_US
dc.contributor.advisorMin-Der Linen_US
dc.contributor.authorLin, Yu-Haoen_US
dc.identifier.citation1. Lovelace, K. A., International Conference on Groundwater Quality Protection. Evaluation the Technical Impracticability of Groundwater Cleanup 1997, Taipei, pp. 165-179. 2. Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V., Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science 2007, 24, (1), 45-57. 3. Phenrat, T.; Liu, Y.; Tilton, R. D.; Lowry, G. V., Adsorbed Polyelectrolyte Coatings Decrease Fe0 Nanoparticle Reactivity with TCE in Water: Conceptual Model and Mechanisms. Environmental Science and Technology 2009, 43, (5), 1507-1514. 4. Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V., Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science and Technology 2007, 41, (1), 284-290. 5. Saleh, N.; Kim, H.-J.; Phenrat, T.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V., Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated Sand Colμmns. Environmental Science & Technology 2008, 42, (9), 3349-3355. 6. Schrick, B.; Hydutsky, B. W.; Blough, J. L.; Mallouk, T. E., Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials 2004, 16, (11), 2187-2193. 7. Comba, S.; Sethi, R., Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gμm. Water Research 2009, 43, (15), 3717-3726. 8. Cao, J.; Elliott, D.; Zhang, W.-X., Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research 2005, 7, (4-5), 499-506. 9. He, F.; Zhang, M.; Qian, T.; Zhao, D., Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Colμmn experiments and modeling. Journal of Colloid and Interface Science 2009, 334, (1), 96-102. 10. Kretzschmar, R.; Sticher, H., Transport of Hμmic-Coated Iron Oxide Colloids in a Sandy Soil: Influence of Ca2+ and Trace Metals. Environmental Science & Technology 1997, 31, (12), 3497-3504. 11. Zheng, T.; Zhan, J.; He, J.; Day, C.; Lu, Y.; McPherson, G. L.; Piringer, G.; John, V. T., Reactivity Characteristics of Nanoscale Zerovalent Iron-Silica Composites for Trichloroethylene Remediation. Environmental Science and Technology 2008, 42, (12), 4494-4499. 12. Tufenkji, N.; Elimelech, M., Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environmental Science and Technology 2004, 38, (2), 529-536. 13. He, F.; Zhao, D., Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions. Applied Catalysis B: Environmental 2008, 84, (3-4), 533-540. 14. Zhang, W.-x.; Wang, C.-B.; Lien, H.-L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today 1998, 40, (4), 387-395. 15. U.S.EPA, Field Applications of in Situ Remediation Technologies:Permeable Reactive Barriers. Office of Solid Waste and Emergency Response 2002, Technology Innovation Office. 16. Elliott, D. W.; Zhang, W. X., Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science and Technology 2001, 35, (24), 4922-4926. 17. Meyer, D. E.; Curran, M. A.; Gonzalez, M. A., An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. In 2009; Vol. 43, pp 1256-1263. 18. Hoag, G. E.; Collins, J. B.; Holcomb, J. L.; Hoag, J. R.; Nadagouda, M. N.; Varma, R. S., Degradation of bromothymol blue by ''greener'' nano-scale zero-valent iron synthesized using tea polyphenols. journal of materials chemistry 2009, 19, (45), 8671-8677. 19. Nurmi, J. T.; Tratnyek, P. G.; Sarathy, V.; Baer, D. R.; Amonette, J. E.; Pecher, K.; Wang, C.; Linehan, J. C.; Matson, D. W.; Penn, R. L.; Driessen, M. D., Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environmental Science and Technology 2005, 39, (5), 1221-1230. 20. 王正全, 奈米級零價鐵及銅鐵雙金屬還原水中硝酸鹽之研究. 博士論文 2001, 國立成功大學化學工程研究所. 21. Toshima, N. Y., T., Bimetallic Nanoparticles Novel Materials for Chemical and Physical Applications New J. Chem. 1998. 22. 吳明立, 微乳化系統製備雙金屬奈米粒子之研究. 博士論文 2001, 國立成功大學化學工程研究所. 23. Sugimoto, T., PREPARATION OF MONODISPERSED COLLOIDAL PARTICLES. Advances in Colloid and Interface Science 1987, 28, (1), 65-108. 24. Huang, K. C.; Ehrman, S. H., Synthesis of Iron Nanoparticles via Chemical Reduction with Palladiμm Ion Seeds. Langmuir 2007, 23, (3), 1419-1426. 25. Zheng, J.; Stevenson, M. S.; Hikida, R. S.; Van Patten, P. G., Influence of pH on Dendrimer-Protected Nanoparticles. Journal of Physical Chemistry B 2002, 106, (6), 1252-1255. 26. 陳俞融, UV/EUV 光子對星際冰晶的光化作用. 博士論文 2007, 國立中央大學物理研究所. 27. Sun, Y.-P.; Li, X.-Q.; Zhang, W.-X.; Wang, H. P., A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 308, (1-3), 60-66. 28. Liou, Y. H.; Lin, C. J.; Weng, S. C.; Ou, H. H.; Lo, S. L., Selective Decomposition of Aqueous Nitrate into Nitrogen Using Iron Deposited Bimetals. Environmental Science & Technology 2009, 43, (7), 2482-2488. 29. Geng, B.; Jin, Z.; Li, T.; Qi, X., Kinetics of hexavalent chromiμm removal from water by chitosan-Fe0 nanoparticles. Chemosphere 2009, 75, (6), 825-830. 30. Karabelli, D.; Üzüm, C. a. r.; Shahwan, T.; Eroğlu, A. E.; Scott, T. B.; Hallam, K. R.; Lieberwirth, I., Batch Removal of Aqueous Cu2+ Ions Using Nanoparticles of Zero-Valent Iron: A Study of the Capacity and Mechanism of Uptake. Industrial and Engineering Chemistry Research 2008, 47, (14), 4758-4764. 31. Lien, H.-L., Oxidative and reductive degradation of mixed contaminants by bifunctional alμminμm. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2006, 10, (1), 41-45. 32. Li, X.-Q.; Cao, J.; Zhang, W.-X., Stoichiometry of Cr(VI) immobilization using nanoscale zero valent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial and Engineering Chemistry Research 2008, 47, (7), 2131-2139. 33. Matheson, L. J.; Tratnyek, P. G., Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology 1994, 28, (12), 2045. 34. Vogel, T. M.; Criddle, C. S.; McCarty, P. L., TRANSFORMATIONS OF HALOGENATED ALIPHATIC COMPOUNDS. Environmental Science and Technology 1987, 21, (8), 722-736. 35. Zhang, W.-x., Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 2003, 5, 323-332. 36. Ritter, K.; Odziemkowski, M. S.; Gillham, R. W., An in situ study of the role of surface films on granular iron in the permeable iron wall technology. Journal of Contaminant Hydrology 2002, 55, (1-2), 87-111. 37. Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G., Kinetics of halogenated organic compound degradation by iron metal. Environmental Science and Technology 1996, 30, (8), 2634-2640. 38. Lien, H.-L.; Zhang, W.-X., Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. Journal of Environmental Engineering 2005, 131, (1), 4-10. 39. Gotpagar, J. K.; Grulke, E. A.; Bhattacharyya, D., Reductive dehalogenation of trichloroethylene: Kinetic models and experimental verification. Journal of Hazardous Materials 1998, 62, (3), 243-264. 40. Gotpagar, J.; Lyuksyutov, S.; Cohn, R.; Grulke, E.; Bhattacharyya, D., Reductive dehalogenation of trichloroethylene with zero-valent iron: Surface profiling microscopy and rate enhancement studies. Langmuir 1999, 15, (24), 8412-8420. 41. Su, C.; Puls, R. W., Kinetics of trichloroethene reduction by zerovalent iron and tin: Pretreatment effect, apparent activation energy, and intermediate products. Environmental Science and Technology 1999, 33, (1), 163-168. 42. Wuest, W. F.; Koeber, R.; Schlicker, O.; Dahmke, A., Combined zero- and first-order kinetic model of the degradation of TCE and cis-DCE with commercial iron. Environmental Science and Technology 1999, 33, (23), 4304-4309. 43. Martin, J. E.; Herzing, A. A.; Yan, W.; Li, X.-Q.; Koel, B. E.; Kiely, C. J.; Zhang, W.-X., Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 2008, 24, (8), 4329-4334. 44. Reardon, E. J.; Fagan, R.; Vogan, J. L.; Przepiora, A., Anaerobic Corrosion Reaction Kinetics of Nanosized Iron. Environmental Science and Technology 2008, 42, (7), 2420-2425. 45. Cao, J.; Li, X.; Tavakoli, J.; Zhang, W.-X., Temperature programmed reduction for measurement of oxygen content in nanoscale zero-valent iron. Environmental Science and Technology 2008, 42, (10), 3780-3785. 46. Sarathy, V.; Tratnyek, P. G.; Nurmi, J. T.; Baer, D. R.; Amonette, J. E.; Chun, C. L.; Penn, R. L.; Reardon, E. J., Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity. Journal of Physical Chemistry C 2008, 112, (7), 2286-2293. 47. Katsenovich, Y. P.; Miralles-Wilhelm, F. R., Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Science of The Total Environment 2009, 407, (18), 4986-4993. 48. Johnson, R. L.; Johnson, G. O. r.; Nurmi, J. T.; Tratnyek, P. G., Natural Organic Matter Enhanced Mobility of Nano Zerovalent Iron. Environmental Science & Technology 2009, 43, (14), 5455-5460. 49. Feng, J.; Zhu, B.-w.; Lim, T.-T., Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction. Chemosphere 2008, 73, (11), 1817-1823. 50. Wei, Y.-T.; Wu, S.-C.; Chou, C.-M.; Che, C.-H.; Tsai, S.-M.; Lien, H.-L., Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research 2010, 44, (1), 131-140. 51. Lien, H. L.; Zhang, W. X., Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 191, (1-2), 97-105. 52. 林進榮, 負載奈米銅離子之陽離子交換樹脂還原破壞水中四氯化碳之研究. 博士論文 2005, 國立台灣大學環境工程研究所. 53. Lim, T.-T.; Zhu, B.-W., Effects of anions on the kinetics and reactivity of nanoscale Pd/Fe in trichlorobenzene dechlorination. Chemosphere 2008, 73, (9), 1471-1477. 54. Korte, N. E.; West, O. R.; Liang, L.; Gu, B.; Zutman, J. L.; Fernando, Q., The effect of solvent concentration on the use of palladized-iron for the step-wise dechlorination of polychlorinated biphenyls in soil extracts. Waste Management 2002, 22, (3), 343-349. 55. Somaskandan, K.; Veres, T.; Niewczas, M.; Simard, B., Surface protected and modified iron based core-shell nanoparticles for biological application. New Joural of Chemistry 2008, 32, 201-209. 56. Lien, H.-L.; Zhang, W., Novel bifunctional alμminμm for oxidation of MTBE and TAME. Journal of Environmental Engineering 2002, 128, (9), 791-798. 57. Bezbaruah, A. N.; Krajangpan, S.; Chisholm, B. J.; Khan, E.; Elorza Bermudez, J. J., Entrapment of iron nanoparticles in calciμm alginate beads for groundwater remediation applications. Journal of Hazardous Materials 2009, 166, (2-3), 1339-1343. 58. Bai, X.; Ye, Z.-F.; Qu, Y.-Z.; Li, Y.-F.; Wang, Z.-Y., Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials 2009, 172, (2-3), 1357-1364. 59. Wu, Y.; Zhang, J.; Tong, Y.; Xu, X., Chromiμm (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles. Journal of Hazardous Materials 2009, 172, (2-3), 1640-1645. 60. Darab, J. G.; Amonette, A. B.; Burke, D. S. D.; Orr, R. D.; Ponder, S. M.; Schrick, B.; Mallouk, T. E.; Lukens, W. W.; Caulder, D. L.; Shuh, D. K., Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chemistry of Materials 2007, 19, (23), 5703-5713. 61. Hildebrand, H.; Mackenzie, K.; Kopinke, F.-D., Highly Active Pd-on-Magnetite Nanocatalysts for Aqueous Phase Hydrodechlorination Reactions. Environmental Science & Technology 2009, 43, (9), 3254-3259. 62. Hildebrand, H.; Mackenzie, K.; Kopinke, F.-D., Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes--Influence of water constituents. Applied Catalysis B: Environmental 2009, 91, (1-2), 389-396. 63. Wu, L.; Shamsuzzoha, M.; Ritchie, S. M. C., Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water. Journal of Nanoparticle Research 2005, 7, (4-5), 469-476. 64. Geng, B.; Jin, Z.; Li, T.; Qi, X., Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromiμm in water. Science of The Total Environment 2009, 407, (18), 4994-5000. 65. Huang, Q.; Shi, X.; Pinto, R. A.; Petersen, E. J.; Weber, W. J., Tunable Synthesis and Immobilization of Zero-Valent Iron Nanoparticles for Environmental Applications. Environmental Science and Technology 2008, 42, (23), 8884-8889. 66. Üzüm, C.; Shahwan, T.; Eroglu, A. E.; Hallam, K. R.; Scott, T. B.; Lieberwirth, I., Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science 2008, In Press, Corrected Proof. 67. Ponder, S. M.; Darab, J. G.; Mallouk, T. E., Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science and Technology 2000, 34, (12), 2564-2569. 68. Choi, H.; Agarwal, S.; Al-Abed, S. R., Adsorption and Simultaneous Dechlorination of PCBs on GAC/Fe/Pd: Mechanistic Aspects and Reactive Capping Barrier Concept. Environmental Science & Technology 2008, 43, (2), 488-493. 69. Choi, H.; Al-Abed, S. R.; Agarwal, S., Effects of Aging and Oxidation of Palladized Iron Embedded in Activated Carbon on the Dechlorination of 2-Chlorobiphenyl. Environmental Science & Technology 2009, 43, (11), 4137-4142. 70. Choi, H.; Al-Abed, S. R.; Agarwal, S.; Dionysiou, D. D., Synthesis of Reactive Nano-Fe/Pd Bimetallic System-Impregnated Activated Carbon for the Simultaneous Adsorption and Dechlorination of PCBs. Chemistry of Materials 2008, 20, (11), 3649-3655. 71. Zhan, J.; Sunkara, B.; Le, L.; John, V. T.; He, J.; McPherson, G. L.; Piringer, G.; Lu, Y., Multifunctional Colloidal Particles for in Situ Remediation of Chlorinated Hydrocarbons. Environmental Science & Technology 2009, 43, (22), 8616-8621. 72. Zhan, J.; Zheng, T.; Piringer, G.; Day, C.; McPherson, G. L.; Lu, Y.; Papadopoulos, K.; John, V. T., Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science and Technology 2008, 42, (23), 8871-8876. 73. Hoch, L. B.; Mack, E. J.; Hydutsky, B. W.; Hershman, J. M.; Skluzacek, J. M.; Mallouk, T. E., Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromiμm. Environmental Science and Technology 2008, 42, (7), 2600-2605. 74. Kanel, S. R.; Goswami, R. R.; Clement, T. P.; Barnett, M. O.; Zhao, D., Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environmental Science and Technology 2008, 42, (3), 896-900. 75. He, F.; Zhao, D., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science and Technology 2005, 39, (9), 3314-3320. 76. Phenrat, T.; Long, T. C.; Lowry, G. V.; Veronesi, B., Partial Oxidation (Aging) and Surface Modification Decrease the Toxicity of Nanosized Zerovalent Iron. Environmental Science and Technology 2009, 43, (1), 195-200. 77. Yang, G. C. C.; Tu, H.-C.; Hung, C.-H., Stability of nanoiron slurries and their transport in the subsurface environment. Separation and Purification Technology 2007, 58, (1), 166-172. 78. Yang, G. C. C.; Hung, C.-H.; Tu, H.-C., Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 2008, 43, (8), 945 - 951. 79. Shu, H.-Y.; Chang, M.-C.; Chang, C.-C., Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution. Journal of Hazardous Materials 2009, 167, (1-3), 1178-1184. 80. Wei-xian, Z.; Daniel, W. E., Applications of iron nanoparticles for groundwater remediation. Remediation Journal 2006, 16, (2), 7-21. 81. He, F.; Zhao, D.; Paul, C., Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research 2010, 44, (7), 2360-2370. 82. Quinn, J.; Geiger, C.; Clausen, C.; Brooks, K.; Coon, C.; O''Hara, S.; Krug, T.; Major, D.; Yoon, W.-S.; Gavaskar, A.; Holdsworth, T., Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environmental Science and Technology 2005, 39, (5), 1309-1318. 83. Berge, N. D.; Ramsburg, C. A., Oil-in-Water Emulsions for Encapsulated Delivery of Reactive Iron Particles. Environmental Science & Technology 2009, 43, (13), 5060-5066. 84. Joo, S. H.; Feitz, A. J.; Waite, T. D., Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron. Environmental Science & Technology 2004, 38, (7), 2242-2247. 85. Ramos, M. A. V.; Yan, W.; Li, X.-q.; Koel, B. E.; Zhang, W.-x., Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding the Significance of the Core-Shell Structure. The Journal of Physical Chemistry C 2009, 113, (33), 14591-14594. 86. Chen, L.-H.; Huang, C.-C.; Lien, H.-L., Bimetallic iron-alμminμm particles for dechlorination of carbon tetrachloride. Chemosphere 2008, 73, (5), 692-697. 87. Kang, S.-H.; Choi, W., Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an Electron Shuttle. Environmental Science & Technology 2008, 43, (3), 878-883. 88. Kanel, S. R.; Choi, H., Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Science and Technology 2007, 55, (1-2), 157-162. 89. Phenrat, T.; Kim, H.-J.; Fagerlund, F.; Illangasekare, T.; Tilton, R. D.; Lowry, G. V., Particle Size Distribution, Concentration, and Magnetic Attraction Affect Transport of Polymer-Modified Fe0 Nanoparticles in Sand Colμmns. Environmental Science & Technology 2009, 43, (13), 5079-5085. 90. Tiraferri, A.; Sethi, R., Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gμm. Journal of Nanoparticle Research 2009, 11, (3), 635-645. 91. Vecchia, E. D.; Luna, M.; Sethi, R., Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gμm. Environmental Science & Technology 2009, 43, (23), 8942-8947. 92. Lien, H.-L.; Wilkin, R. T., High-level arsenite removal from groundwater by zero-valent iron. Chemosphere 2005, 59, (3), 377-386. 93. Li, X.-Q.; Zhang, W.-X., Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration. Langmuir 2006, 22, (10), 4638-4642. 94. Naja, G.; Halasz, A.; Thiboutot, S.; Ampleman, G.; Hawari, J., Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Using Zerovalent Iron Nanoparticles. Environmental Science and Technology 2008, 42, (12), 4364-4370. 95. Liu, Y.; Majetich, S. A.; Tilton, R. D.; Sholl, D. S.; Lowry, G. V., TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science and Technology 2005, 39, (5), 1338-1345. 96. Liu, Y.; Lowry, G. V., Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science and Technology 2006, 40, (19), 6085-6090. 97. Lien, H.-L.; Zhang, W.-x., Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering 1999, 125, (11), 1042-1047. 98. Kim, Y.-H.; Carraway, E. R., Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science and Technology 2000, 34, (10), 2014-2017. 99. Wang, X.; Chen, C.; Chang, Y.; Liu, H., Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials 2008, In Press, Corrected Proof. 100. Wang, X.; Chen, C.; Liu, H.; Ma, J., Characterization and Evaluation of Catalytic Dechlorination Activity of Pd/Fe Bimetallic Nanoparticles. Industrial and Engineering Chemistry Research 2008, 47, (22), 8645-8651. 101. Cantrell, K. J.; Kaplan, D. I., Zero-Valent Iron Colloid Emplacement in Sand Colμmns. Journal of Environmental Engineering 1997, 123, (5), 499-505. 102. Schimid, G., Clusters and Colloids: From Theory to Application Vch Verlagsgesellschaft Mbh New York, 1994. 103. Tiraferri, A.; Chen, K. L.; Sethi, R.; Elimelech, M., Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gμm. Journal of Colloid and Interface Science 2008, 324, (1-2), 71-79. 104. Andrea, B. R. M., Colloidal metal nanoparticles dispersed in amphiphilic polymers. Polymers for Advanced Technologies 2001, 12, (1-2), 96-106. 105. 黃國政, 化學還原法合成奈米金屬(鎳、鐵、銀)材料之研究與應用. 博士論文 2007, 國立清華大學化學工程研究所. 106. Saleh, N.; Phenrat, T.; Sirk, K.; Dufour, B.; Ok, J.; Sarbu, T.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G. V., Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters 2005, 5, (12), 2489-2494. 107. Sirk, K. M.; Saleh, N. B.; Phenrat, T.; Kim, H.-J.; Dufour, B.; Ok, J.; Golas, P. L.; Matyjaszewski, K.; Lowry, G. V.; Tilton, R. D., Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models. Environmental Science and Technology 2009, 43, (10), 3803-3808. 108. Kim, H.-J.; Phenrat, T.; Tilton, R. D.; Lowry, G. V., Fe0 Nanoparticles Remain Mobile in Porous Media after Aging Due to Slow Desorption of Polymeric Surface Modifiers. Environmental Science and Technology 2009, 43, (10), 3824-3830. 109. He, F. Preparation, characterization and applications of polysaccharidestabilized metal nanoparticles for remediation of chlorinated solvents in soils and groundwater. Ph.D. Thesis, Auburn University, Auburn, 2007. 110. He, F.; Zhao, D.; Liu, J.; Roberts, C. B., Stabilization of Fe - Pd nanoparticles with sodiμm carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial and Engineering Chemistry Research 2007, 46, (1), 29-34. 111. Naja, G.; Apiratikul, R.; Pavasant, P.; Volesky, B.; Hawari, J., Dynamic and equilibriμm studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Environmental Pollution 2009, 157, (8-9), 2405-2412. 112. Geiger, C. L., C. Clausen, R. W. DeVor, K. M. Milμm, C. A. Clausen, and J. W. Quinn, Remediation of DNAPL and Heavy Metal Contamination Using Emulsified Zero-Valent Metal Particles. 第三屆環境保護與奈米科技學術研討會論文集 2006, 第15-30頁,高雄市 113. Wang, C.-B.; Zhang, W.-X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science and Technology 1997, 31, (7), 2154-2156. 114. Lin, Y.-H.; Tseng, H.-H.; Wey, M.-Y.; Lin, M.-D., Characteristics, morphology, and stabilization mechanism of PAA250K-stabilized bimetal nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 349, (1-3), 137-144. 115. Wei, S.; Zhang, Y.; Xu, J., The dynamic rheology behaviors of reactive polyacrylic acid/nano-Fe3O4 ethanol suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 296, (1-3), 51-56. 116. Liufu, S.; Xiao, H.; Li, Y., Adsorption of poly(acrylic acid) onto the surface of titaniμm dioxide and the colloidal stability of aqueous suspension. Journal of Colloid and Interface Science 2005, 281, (1), 155-163. 117. Iijima, M.; Yonemochi, Y.; Tsukada, M.; Kamiya, H., Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures. Journal of Colloid and Interface Science 2006, 298, (1), 202-208. 118. Shao, D.; Jiang, Z.; Wang, X.; Li, J.; Meng, Y., Plasma Induced Grafting Carboxymethyl Cellulose on Multiwalled Carbon Nanotubes for the Removal of UO22+ from Aqueous Solution. Journal of Physical Chemistry B 2009, 113, (4), 860-864. 119. Pan, G.; Li, L.; Zhao, D.; Chen, H., Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils. Environmental Pollution 2009, 158, (1), 35-40. 120. Joo, S. H.; Al-Abed, S. R.; Luxton, T., Influence of Carboxymethyl Cellulose for the Transport of Titaniμm Dioxide Nanoparticles in Clean Silica and Mineral-Coated Sands. Environmental Science & Technology 2009, 43, (13), 4954-4959. 121. 陳家洵; 林錕松, 奈米零價鐵在孔隙介質之流佈與傳輸研究(I). 行政院國家科學委員會補助專題研究計畫成果報告 2006. 122. Ryan, J. N.; Elimelech, M., Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 107, 1. 123. Jegatheesan, V.; Vigneswaran, S., Deep Bed Filtration: Mathematical Models and Observations. Critical Reviews in Environmental Science and Technology 2005, 35, (6), 515-569. 124. Tratnyek, P. G.; Johnson, R. L., Nanotechnologies for environmental cleanup. Nano Today 2006, 1, (2), 44-48. 125. Tufenkji, N., Modeling microbial transport in porous media: Traditional approaches and recent developments. Advances in Water Resources 2007, 30, (6-7), 1455-1469. 126. Yao, K.-M.; Habibian, M. T.; O''Melia, C. R., Water and waste water filtration. Concepts and applications. Environmental Science and Technology 1971, 5, (11), 1105-1112. 127. Tufenkji, N.; Elimelech, M., Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 2004, 20, (25), 10818-10828. 128. Lien, H. L. Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic Compounds. Lehigh University, 2000. 129. Long, W.; Hilpert, M., A Correlation for the Collector Efficiency of Brownian Particles in Clean-Bed Filtration in Sphere Packings by a Lattice-Boltzmann Method. Environmental Science & Technology 2009, 43, (12), 4419-4424. 130. 高濂; 孫靜; 劉陽橋, 奈米粉體的分散及表面改性. 五南圖書出版股份有限公司 2005. 131. Jennifer, A. L., Colloidal Processing of Ceramics. Journal of the American Ceramic Society 2000, 83, (10), 2341-2359. 132. Lu, K., Theoretical analysis of colloidal interaction energy in nanoparticle suspensions. Ceramics International 2008, 34, (6), 1353-1360. 133. Fritz, G.; Schadler, V.; Willenbacher, N.; Wagner, N. J., Electrosteric Stabilization of Colloidal Dispersions. Langmuir 2002, 18, (16), 6381-6390. 134. Hinze, J. O., Turbulence. McGraw Hill: New York, 1975. 135. Tien, C.; Ramarao, B. V., Granular Filtration of Aerosols and Hydrosols Supplement. Butterworth-Heinemann: Oxford, 2007; p 1-25. 136. Payatakes, A. C.; Tien, C.; Turian, R. M., Trajectory calculation of particle deposition in deep bed filtration. In 1974; Vol. 20, p 889. 137. Sharma, M. M.; Yortsos, Y. C., Transport of particulate suspensions in porous media: Model formulation. AIChE Journal 1987, 33, (10), 1636-1643. 138. Chan, H.-C.; Chen, S.-C.; Chang, Y.-I., Simulation: The deposition behavior of Brownian particles in porous media by using the triangular network model. Separation and Purification Technology 2005, 44, (2), 103-114. 139. Chang, Y.-I.; Chan, H.-C., Effects of three different network models on the filter coefficient of brownian particles. Separation and Purification Technology 2006, 51, (3), 291-302. 140. Cushing, R. S.; Lawler, D. F., Depth filtration: fundamental investigation through three-dimensional trajectory. Environmental Science and Technology 1998, 32, 3793. 141. Kemps, J. A. L.; Bhattacharjee, S., Particle Tracking Model for Colloid Transport near Planar Surfaces Covered with Spherical Asperities. Langmuir 2009, 25, (12), 6887-6897. 142. Bhattacharjee, S.; Ko, C.-H.; Elimelech, M., DLVO Interaction between Rough Surfaces. Langmuir 1998, 14, (12), 3365-3375. 143. Kemps, J. A. L.; Bhattacharjee, S., Interactions between a Solid Spherical Particle and a Chemically Heterogeneous Planar Substrate. Langmuir 2005, 21, (25), 11710-11721. 144. Johnson, W. P.; Li, X.; Yal, G., Colloid Retention in Porous Media:Mechanistic Confirmation of Wedging and Retention in Zones of Flow Stagnation. Environmental Science & Technology 2007, 41, (4), 1279-1287. 145. Ma, H.; Johnson, W. P., Colloid Retention in Porous Media of Various Porosities: Predictions by the Hemispheres-in-Cell Model. Langmuir 2009, 26, (3), 1680-1687. 146. Li, Z.; Zhang, D.; Li, X., Tracking Colloid Transport in Porous Media Using Discrete Flow Fields and Sensitivity of Simulated Colloid Deposition to Space Discretization. Environmental Science & Technology 2010, 44, (4), 1274-1280. 147. Chein, R.; Liao, W., Analysis of particle-wall interactions during particle free fall. Journal of Colloid and Interface Science 2005, 288, (1), 104-113. 148. Bergendahl, J.; Grasso, D., Prediction of colloid detachment in a model porous media: hydrodynamics. Chemical Engineering Science 2000, 55, (9), 1523-1532. 149. Torkzaban, S.; Bradford, S. A.; Walker, S. L., Resolving the Coupled Effects of Hydrodynamics and DLVO Forces on Colloid Attachment in Porous Media. Langmuir 2007, 23, (19), 9652-9660. 150. Li, X.-Q.; Elliott, D. W.; Zhang, W.-X., Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 2006, 31, (4), 111-122. 151. Hydutsky, B. W.; Mack, E. J.; Beckerman, B. B.; Skluzacek, J. M.; Mallouk, T. E., Optimization of nano- and microiron transport through sand colμmns using polyelectrolyte mixtures. Environmental Science and Technology 2007, 41, (18), 6418-6424. 152. Kanel, S. R.; Choi, H.; Kim, J.-Y.; Vigneswaran, S.; Shim, W. G., Removal of arsenic(III) from groundwater using low-cost industrial by-products - Blast furnace slag. Water Quality Research Journal of Canada 2006, 41, (2), 130-139. 153. Kanel, S. R.; Greneche, J.-M.; Choi, H., Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science and Technology 2006, 40, (6), 2045-2050. 154. Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C., Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders. Inorganic Chemistry 1995, 34, (1), 28-35. 155. Liou, Y. H.; Lo, S.-L.; Lin, C.-J.; Wen, H. K.; Shih, C. W., Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. Journal of Hazardous Materials 2005, 126, (1-3), 189-194. 156. Lien, H.-L.; Zhang, W.-X., Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladiμm on hydrodechlorination. Applied Catalysis B: Environmental 2007, 77, (1-2), 110-116. 157. He, F.; Zhao, D., Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environmental Science and Technology 2007, 41, (17), 6216-6221. 158. Lien, H.-L.; Wilkin, R., Reductive activation of dioxygen for degradation of methyl tert-butyl ether by bifunctional alμminμm. Environmental Science and Technology 2002, 36, (20), 4436-4440. 159. Wang, P.; Keller, A. A., Natural and Engineered Nano and Colloidal Transport: Role of Zeta Potential in Prediction of Particle Deposition. Langmuir 2009, 25, (12), 6856-6862. 160. Pelley, A. J.; Tufenkji, N., Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. Journal of Colloid and Interface Science 2008, 321, (1), 74-83. 161. Kanel, S. R.; Nepal, D.; Manning, B.; Choi, H., Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. Journal of Nanoparticle Research 2007, 9, (5), 725-735. 162. 陳善智. 具布朗運動行為的膠體粒子在多孔性介質中吸附 與輸送現象的探討. 國立台灣大學, Taipei, 2003. 163. Joseph, C. F. C.; Kunihisa, S., Laminar Flow in Tubes with Constriction. Physics of Fluids 1972, 15, (10), 1700-1706. 164. Chang, Y.-I. M.; Whang, J.-J., Deposition of Brownian particles in the presence of energy barriers of DLVO theory: effect of the dimensionless groups. Chemical Engineering Science 1998, 53, (23), 3923-3939. 165. Chang, Y.-I.; Chen, Y.-S.; Cheng, W.-Y., The deposition morphology of Brownian/non-Brownian particles wizh_TW
dc.description.abstract本研究分別採用羧甲基纖維素鈉(Carboxymethyl Cellulose Sodium, CMC)改質奈米零價鐵(Nanoscale Zero Valent Iron, NZVI)顆粒表面(稱為CMC Modified NZVI, CNZVI)、以及將NZVI顆粒分散負載於聚甲基丙烯酸(Poly Acrylic Acid, PAA)載具(vehicle) (稱為PAA250K Modified NZVI, PNZVI)兩種方式,以提升NZVI之懸浮穩定性與傳輸能力,並進一步添加鈀金屬以異種成核方式降低NZVI尺寸,以提昇NZVI對污染物之去除能力。其中,除了利用懸浮指標與多孔介質管柱實驗測試穩定化NZVI的穩定懸浮度與傳輸能力外,並評估地下水流速、離子強度對於NZVI傳輸之影響。另外,研究中亦採用力平衡理論,發展顆粒軌跡模式,除了可深入瞭解NZVI顆粒於土壤孔隙介質之移動狀況,並可作為評估NZVI表面改質成效之工具。 研究結果顯示,PNZVI因PAA分子鏈間形成交聯之網狀結構(cross-link gelling network)以包埋NZVI,而如膠囊般穩定分散於溶液中,且亦因此存放於空氣中較不易氧化,故PNZVI整體之傳輸能力優於CNZVI;但於40mM之鈣離子濃度下,PNZVI的傳輸能力則顯著下降。另外,軌跡模式模擬結果顯示,直徑80nm之一般NZVI於地下孔隙移動時,本身重力之影響不可忽略,流速越小重力影響越顯著,且隨機之布朗運動主導了顆粒的移動軌跡,並以孔隙進流口處最易造成沉澱。至於具有空間靜電斥力(electrosteric repulsion)之穩定PSS-RNIP奈米鐵 (Polystyrene Sulfonte modified commercial reactive nanoscale iron particle)顆粒,則因顆粒將受到空間靜電斥力之排斥而遠離介質,故不曾出現沉澱之現象。zh_TW
dc.description.abstractThis study modified the surface of nanoscale zero valent iron (NZVI) to synthesize the stabilized and mobile NZVI using two method. The first one is by carboxymethyl cellulose sodium (CMC) coating, and the other is to make NZVI encapsulated into the poly acrylic acid (PAA) vehicle. They are tilted as CNZVI and PNZVI, respectively. Furthermore, this study also synthesized the PFNZVI (PNZVI with finer sizes) using the method of heterogeneous nucleation to enhance the contaminant removal ability of NZVI. The mobility of NZVI in porous media will be evaluated by a series of column tests, and the impacts of groundwater parameters, such as flow velocities and ion strengths, on NZVI mobility will also be investigated. A NZVI trajectory model based on theory of force balance was also developed to simulate the movement of single NZVI particle in porous media, which could also used for evaluating the surface modification of NZVI. Current results reveal that PAA form a capsule-like gelling network to encapsulate NZVI (PNZVI), decrease the oxidation of NZVI in the air, and result in better mobility than CNZVI. However, when the Ca2+ concentration increases to 40 mM, the PAA gelling network is destroyed by Ca2+ and mobility of PNZVI decrease apparently. In addition, the analysis of trajectory model indicated that for unstabilized NZVI with 80nms diameter moves in porous media, the gravity effects of the particle can''t be neglected. The NZVI movement is dominated by the Brownian motion and most of the deposit occurred at the area of pore inlet. For stabilized NZVI, the particles kept away from the porous media due to electrosteric repulsion force, and no deposit is ever observed. Keyword : Nanoscale zero valent iron、carboxymethyl cellulose sodium、poly acrylic acid、mobility、motion trajectoryzh_TW
dc.description.tableofcontents摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號說明 XI 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 1-3 研究架構與項目 3 1-4 預期成果 4 第二章 文獻回顧 6 2-1 三氯乙烯污染與整治方式 6 2-2 奈米顆粒之合成與穩定化 7 2-3 零價鐵、奈米零價鐵與其雙金屬之應用 16 2-3-1 ZVI與NZVI之去除污染物機制、影響因子與氧化 16 2-3-2 NZVI與BNZVI之發展與應用 20 2-4 NZVI與BNZVI之表面改質、穩定分散與應用 23 2-4-1 穩定機制 23 2-4-2 表面改質劑 28 2-5 NZVI之傳輸與過濾理論 30 2-5-1 CFT理論、傳輸係數與黏附係數(Sticking Coefficient) 32 2-6 NZVI軌跡分析模式 40 2-6-1軌跡模式之發展與應用 40 2-7文獻總結 42 第三章 研究方法 43 3-1 未穩定NZVI與其Pd/Fe雙金屬之製備 45 3-1-1未穩定NZVI之製備 45 3-1-2未穩定雙金屬Pd/Fe之製備 46 3-2 穩定NZVI之製備 48 3-2-1 PNZVI與PBNZVI之製備 48 3-2-2 PFNZVI之製備 50 3-2-3 CNZVI之製備 50 3-3 藥品、儀器設備與分析方法 52 3-3-1 藥品與設備 52 3-3-2 分析方法 55 3-3-3 NZVI之移動性測試 59 3-4 傳輸模式 60 3-4-1 軌跡模式(Trajectory model) 61 3-4-2 重力(gravity)項FG與浮力(buoyancy)項FB 68 3-4-3 外力作用(External Force)項Fe 69 第四章 結果與討論 75 4-1 實驗結果 75 4-1-1 穩定PNZVI與PBNZVI之製備 75 4-1-2 穩定與未穩定NZVI之特性分析 78 4-1-3 顆粒之FTIR分析結果、穩定機制與懸浮狀態鑑定 88 4-1-3 飽和含水層中,穩定與未穩定NZVI之移動性 94 4-2 NZVI之移動軌跡模擬與解析 102 4-2-1 流場模擬 103 4-2-1 顆粒與孔隙介質之作用能與作用力 104 4-2-2 NZVI之重力、外力與孔隙水流速對於傳輸與吸附的影響 109 4-2-3 NZVI的表面改質對於傳輸與吸附之影響 115 五、結論與建議 117 5-1結論 117 5-2 建議 119 參考文獻 121 Appendix A:Notation, unit and input value 137zh_TW
dc.subjectNanoscale Zero Valent Ironen_US
dc.subjectCarboxymethyl Cellulose Sodiumen_US
dc.subjectPoly Acrylic Aciden_US
dc.subjectmotion trajectoryen_US
dc.subjectelectrosteric repulsionen_US
dc.titleTransport Analysis of Stabilized Nanoscale Iron and Simulation of Naonoparticle Motion Trajectoryen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:環境工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.