Please use this identifier to cite or link to this item:
標題: 3-胺基丙基三乙氧基矽烷改質奈米碳管捕捉及濃縮煙道氣中二氧化碳
Capture and Concentration of CO2 from Flue Gas by 3-Aminopropyl-triethoxysilane Modified CNTs
作者: 陳宏碩
Chen, Hung-Shih
關鍵字: CO2 capture;二氧化碳捕獲;3-aminopropyltriethoxy-silane;Carbon nanotubes;Cyclic adsorption;3-胺基丙基三乙氧基矽烷;奈米碳管;循環吸附
出版社: 環境工程學系所
引用: Aaron, D. and Tsouris, C., (2005) “Separation of CO2 from Flus Gas: Review”, Separation Science and Technology, Vol. 40: pp. 321-348. Audus, H., (2006) “An update on CCS: recent developments. Paper presented at second IEA workshop on legal aspect of storing CO2”, Paris, France, October 17. Bredesen, R., Jordal, K., and Bolland, O., (2004) “High-temperature membranes in power generation with CO2 capture”, Chemical Engineering and Processing, Vol. 43: pp. 1129-1158. Carapellucci, R. and Milazzo, A., (2003) “Membrane systems for CO2 capture and their integration with gas turbine plants”, Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, Vol. 217: pp. 505-517. Chang, A.C.C., Chuang, S.S.C., Gray, M. and Soong, Y., (2003) “In-situ infrared study of CO2 adsorption on SBA-15 grafted with r-(aminopropyl)triethoxysilane”, Energy Fuels, Vol.17: pp. 468-473. Chuang, C.L., Chiang, P.C. and Chang, E.E., (2003) “Modeling VOCs adsorption onto activated carbon”, Chemosphere, Vol. 53: pp. 17-27. Dwivedi, P., Gaur, V., Sharma, A. and Verma, N., (2004) “Comparetive study of removal of volatile orgamic compounds by cryogenic condensation and adsorption by activated carbon fiber”, Separation and Purification Technology, Vol.39: pp. 23-37. Ebbing, D.D. and Gammon, S.D., (1999) “General Chemistry”, 6th ed., Houghton Mifflin: Boston. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D., (2008) “Techno- economic study of CO2 capture from natural gas based hydrogen plants”, International Journal of Greenhouse Gas Control, Vol. 2: pp. 9-20. Frachi, R.S., Harlick, P.J.E. and Sayai, A., (2005) “Applications of pore-expanded mesoporous silica. 2. Development of a hig-capacity, water-tolerant adsorbent for CO2”, Industrial & Engineering Chemistry Research, Vol. 44: pp. 8007-8013. Gao, W., Butler, D. and Tomasko, D.L., (2004) “High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms”, Langmuir, Vol. 27: pp. 8083-8089. Gray, M.L., Champagne, K.J., Fauth, D., Baltrus, J.P. and Pennline, H., (2008) “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”, International Journal of Greenhouse Gas Control, Vol. 2: pp. 3-8. Gray, M.L., Soong, Y., Champagne, K.J., Pennline, H., Baltrus, J.P., Stevens Jr., R.W., Khatri, R., Chuang, S.S.C. and Filburn, T., (2005) “Improved immobilized carbon dioxide sorbents”, Fuel Processing Technology, Vol. 86: pp. 1449-1455. Grobert, N., (2007) “Carbon nanotubes - becoming clean”, Materials Today, Vol.10: pp. 28-35. Hsu, S.C., Lu, C., Su, F., Zeng, W. and Chen, W., (2010). “Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes”, Chemical Engineering Science, Vol. 65: pp. 1354-1361. Huang, H.Y., Yang, R.T., Chinn, D. and Munson, C.L., (2003) “Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas”, Industrial & Engineering Chemistry Reseach, Vol.42: pp. 2427-2433. Iijima, S., (1991) “Helical microtubules of graphitic carbon”, Nature, Vol. 354: pp. 56-58. Jing, S.Y., Lee, H.J. and Choi, C.K., (2002) “Chemical bond structure on Si-O-C composite films with a low dielectric constant deposited by using inductively coupled plasma chemical vapor deposition”, Journal of Korean Physical Society, Vol.41: pp. 769-773. Jordal, K., Anheden, M., Yan, J. and Stromberg, L., (2004) “Oxyfuel combustion for coal-fired power generation with CO2 capture-opportunities and challenges”, Proceedings of the 7th international conference on greenhouse gas control technologies, Vancouver, Canada, September 5-9. Kim, S.N., Son, W.J., Choi, J.S. and Ahn, W.S., (2008) “CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis”, Microporous and Mesoporous Materials, Vol. 115: pp. 497-503. Kim, Y.A., Hayashi, T., Endo, M., Kaburagi, Y., Tsukada, T., Shan, J., Osato, K. and Tsuruoka, S., (2005) “Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method”, Carbon, Vol.43: pp. 2243-2250. Knowles, G.P., Delaney, S.W. and Chaffee, A.L., (2006) “Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents”, Industrial & Engineering Chemistry Research, Vol. 45: pp. 2626-2633. Leyva-Ramos, R., Diaz-Flores, P.E., Leyva-Ramos, J. and Femat-Flores, R.A., (2007) “Kinetic modeling of pentachlorophenol adsorption from aqueous solution on activated carbon fibers”, Carbon, Vol.45: pp. 2280-2289. Li, X., Hagaman, E., Tsouris, C. and Lee, J.W., (2003) “Removal of Carbon Dioxide from Flue Gas by Ammonia Carbonation in the Gas Phase”, Energy and Fuels, Vol. 17: pp. 67-74. Li, Y.H., Xu, C., Wei, B., Zhang, X., Zheng, M., Wu, D. and Ajayan P.M., (2002) “Self-organized ribbons of aligned carbon nanotubes”, Chemistry of Materials, Vol.14: pp. 483-485. Lu, C., Su, F., Hsu, S., Chen, W., Bai, H., Hwang, J.F. and Lee, H.H., (2009) “Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles”, Fuel Processing Technology, Vol. 90: pp. 1543-1549. Lu, C., Bai, H., Wu, B., Su, F. and Hwang, J.F., (2008) “Comparative study of CO2 capture by carbon nanotubes, activated carbon and zeolites”, Energy Fuels, Vol. 22: pp. 3050-3056. Lu, C., Bai, H., Wu, B., Su, F., Chen, W., Hwang, J.F. and Lee, H.H., (2010). “Adsorption of Carbon Dioxide from Gas Streams via Mesoporous Spherical-Silica Particles”, Journal of the Air & Waste Management Association, Vol. 60: pp. 489-496. Meng, L., Fu, C. and Lu, Q., (2009) “Advanced technology for functionalization of carbon nanotubes”, Progress in Natural Science, Vol. 19: pp. 801-810. Metz et al., (2005) “Special Report on Carbon Dioxide Capture and Storage” Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, New York, NY. Na, B.K., Lee, H., Koo, K.K. and Song H.K., (2002) “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process To Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Industrial & Engineering Chemistry Research, Vol.41: pp. 5498-5503. Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F. and Pis, J.J., (2007) “CO2 capture by adsorption with nitrogen enriched carbons”, Fuel, Vol.86: pp. 2204-2212. Rao, A.B. and Rubin, E.S., (2002) “A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control”, Environmental Science & Technology, Vol. 36: pp. 4467-4475. Ramanathan, T., Fisher, F.T., Ruoff, R.S. and Brinson, L.C., (2005) “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems”, Chemistry of Materials, Vol.17: pp. 1290-1295. Rhodes, S.M., Higgins, B., Xu, Y. and Brittain, W.J., (2007) “Hyperbranched polyol/carbon nanofiber composites”, Polymer, Vol.48: pp. 1500-1509. Ruthven, D.M., (1984) “Principles of adsorption and adsorption process”, Wiley, New Youk, USA. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. and Siemieniewska, T., (1985) “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, Vol. 57, No. 4: pp. 603-619. Su, F., Lu, C., Chen, W., Bai, H. and Hwang, J.F., (2009) “Capture of CO2 from flue gas via multiwalled carbon nanotubes”, Science of the Total Environment, Vol. 407: pp. 3017-3023. Su, F., Lu, C., Kuo, S.H. and Zeng, W., (2010) “Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites”, Energy Fuels, Vol. 24: pp. 1441-1448. Suzuki, M., (1990) “Adsorption Engineering”, Kodansha Ltd., Tokyo. Tan, C.S. and Chen, J.E., (2006) “Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed”, Separation and purification technology, Vol. 49: pp. 174-180. Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X. and Song, C., (2009) “Infrared Study of CO2 Sorption over “Molecular Basket” Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve”, The Journal of Physical Chemistry C, Vol. 113: pp. 7260-7268. Xu, X., Song, C., Miller, B.G. and Scaroni, A.W., (2005) “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent”, Fuel Processing Technology, Vol. 86: pp. 1457-1472. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E. and Wright, I., (2008) “Progress in carbon dioxide separation and capture: A review”, Journal of Environmental Sciences, Vol. 20: pp. 14-27. Yokoyama, T., (2004) “Japanese R&D on large-scale CO2 capture”, ECI Conference on Separation Technology, Australia. Yuan, P., Southon, P.D., Liu, Z., Green, M.E.R., Hook, J.M., Antill, S.J. and Kepert, C.J., (2008) “Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane”, The Journal of Physical Chemistry C, Vol. 112: pp. 15742-15751. Yue, M.B., Yuan C., Yi C., Xin D. and Zhu J.H., (2006) “CO2 capture by as-prepared SBA-15 with an occluded organic template”, Advanced Functional Materials, Vol. 16: pp. 1717-1722. Zhao, J., Buldum, A., Han, J. and Lu, J.P., (2002) “Gas molecule adsorption in carbon nanotubes and nanotube bundles”, Nanotechnology, Vol. 13: pp.195-200. 石立節,(2005) “奈米碳管酸純化前後表面特性之變化”,碩士論文,國立中央大學環境工程研究所,桃園縣。 李文峰,(2002) “以MEA溶液去除煙道氣中二氧化碳之研究”,碩士論文,國立成功大學環境工程學系,台南。 洪文雅,(2007) “淺談溫室氣體減量實務技術” 永續產業發展雙月刊,經濟部工業局,第34期,pp. 21-27。 許世杰,(2009) “奈米碳管吸附氣相異丙醇之研究”,博士論文,國立中興大學環境工程系,台中。 陳文發,(2008) “改質奈米碳管及中孔洞矽材吸附二氧化碳之研究”,碩士論文,國立中興大學環境工程系,台中。 陳明志,(2010) “乾式吸附劑吸附二氧化碳之動力學研究”,碩士論文,國立中興大學環境工程系,台中。 陳朝鈺,(2004) “利用變壓吸附相關程序探討二氧化碳回收與再生利用之研究”,博士論文,國立中央大學化學工程與材料工程研究所,桃園。 曾映棠,(2002) “化學溶劑吸附再生法回收廢氣中二氧化碳之溶液使用成本分析”,碩士論文,國立交通大學環境工程研究所,新竹。
本研究以3-aminopropyltriethoxy-silane(APTS)改質之奈米碳管(carbon nanotubes, CNTs)為吸附材,模擬煙道除硫系統(flue gas desulfurization, FGD)後端的二氧化碳(CO2)進行吸附效率測試及評估實場應用之可行性。研究中測試出最佳材料改質條件、物理/化學性吸附量、等溫吸附及吸脫附測試等。由溫度(25-100°C)影響測試結果顯示,CNTs在50°C以下有較佳的吸附效能,適合低溫的煙道氣體吸附。在進流CO2濃度15%、50°C時,CNTs及CNT(APTS)之吸附量分別為21.5及83.3 mg/g,當氣流含水率達2.23%時吸附量可提升至108 mg/g(2.45 mmol/g)。在吸/脫附試程中,最佳高溫/低壓吸脫溫度及時間分別為130°C及1小時,CNT(APTS)經過50次反覆吸脫附後,吸附指標仍維持在80%以上。此外,與沸石及商用活性碳比較,兩者經APTS改質後吸附量分別為28.4和16.4 mg/g,而50次吸附指標則分別是46.4及17.6 %,效率皆較CNT(APTS)差。蒸氣再生測試中,CO2可於短時間內被脫附出,並於50次循環操作後,仍可濃縮70%以上。綜合研究成果顯示,CNT(APTS)吸附量較高、適合煙道氣溫度範圍(40-70°C)、脫附溫度低以及吸附指標高等優點,實場應用上具開發之潛力。

Carbon nanotubes (CNTs) were employed as sorbents which were 3-aminopropyltriethoxysilane(APTS) modified for CO2 capture from flue gas in post-flue gas desulfurization. The temperature tests reflected that adsorption capacity of CNT(APTS) decreased with the temperature indicating the exothermic nature of adsorption process. The experimental maximum adsorption capacity (qe) of CNTs and CNT(APTS) were 21.5 and 83.3 mg/g, respectively, at 50C with 15% of CO2 inlet. The qe increased with increasing water vapor in air stream, which raised to maximum (108 mg/g) with 2.23% of water vapor. The cyclic CO2 adsorption was conducted via combination thermal treatment and vacuum suction at 130C, 0.03 atm in 1 hour. The results show that the adsorption index (AI) at n=50 cycle for CNT(APTS) is 80%. Comparison of cyclic CO2 adsorption among APTS modified CNTs, granular activated carbon (GAC) and mordenite zeolite (MZ) indicating that the qe of CNTs, MZ and GAC are 83.3, 28.4 and 16.4 mg/g, respectively. The AI at n=50 cycle for CNT, MZ and GAC are 81.1, 46.4, 17.6%, respectively. With steam regeneration, CO2 can be concentrated from 15% to a product of 70% and desorption in shorter time. It reveals that CNTs is a possibly cost-effective CO2 sorbent in spite of their high unit cost at the present time. These results are favorable in their use as a sorbent for CO2 capture. This project provide useful information with respect to potential sorbents and the best operating conditions as design criteria for a full-scale CO2 sober in the field.
其他識別: U0005-1307201019423300
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.