Please use this identifier to cite or link to this item:
標題: 流體化觸媒反應器同時去除一氧化氮、二氧化硫及飛灰的動態變化與影響參數之研究
Dynamic variation and influence factors on the simultaneous removal of NO, SO2 and fly ash using a fluidized-bed catalytic reactor
作者: 饒瑞曄
Rau, Jui-Yeh
關鍵字: Fluidized-bed catalytic reactor;流體化觸媒反應器;Simultaneous removal;Fly ash;Acid gases;Particle size distribution;Modified catalyst;同時去除;飛灰;酸性氣體;粒徑分佈;觸媒改質
出版社: 環境工程學系所
引用: Addink, R. and Olie, K., “Mechanisms of formation and destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in heterogeneous systems”, Environ. Sci. Technol., Vol. 29, pp. 1425-1435, 1995. Agbim, J. A., Nienow, A. W. and Rowe, P. N., “Inter-particle forces that suppress bubbling in gas fluidized beds”, Chem. Eng. Sci., Vol. 26, pp. 1293-1294, 1971. Alvin, M. A., “Impact of char and ash fines on porous ceramic filter life”, Fuel Process. Technol., Vol. 56, pp. 143-168, 1998. Al-Zahrani, A. A. and Daous, M. A., “Bed expansion and average bubble rise velocity in a gas-solid fluidized bed”, Powder Technol., Vol. 87, pp. 255-257, 1996. Al-Zahrani, A. A., “Particle size distribution in a continuous gas-solid fluidized bed”, Powder Technol., Vol. 107, pp. 54-59, 2000. Arena, U., Amore, M. D. and Massimilla, L., “Carbon Attrition During the Fluidized Bed Combustion of a coal”, AIChE J., Vol. 29, pp.40-49, 1983. Baeyens, J., Geldart, D. and Wu, S. Y., “Elutriation of fines from gas fluidized beds of Geldart A-type powders-effect of adding superfines”, Powder Technol., Vol. 71, pp. 71-80, 1992. Baron, T., Briens, C. L., Hazlett, J. D., Bergougnou, M. A. and Galtier, P., “Size Distribution of the Particles Entrained from Fluidized-Beds ─ Gas Humidity Effects”, Canadian Journal of Chemical Engineering, Vol. 70, No. 4, pp. 631-635, 1992. Barone, L., Festa, R., Massimilla, L. and Vaccaro, S., “Soot removal and heat recovery from diesel exhausts by means of a fluidized bed exchanger”, J. Powder and Bulk Solids Technol., Vol. 7, pp. 15-18, 1983. Barr T.L. “An ESCA study of termination of the passivation of elemental metals.” J Phys Chem, Vol. 82, pp. 1801-1810, 1978. Barr TL. Recent advances in x-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A, Vol. 9, pp. 1793-1805, 1991. Becher, R. D. and Schlunder, E. U., “Fluidized Bed Granulation-the Importance of a Drying Zone for the Particle Growth Mechanism”, Chem. Eng. Prog., Vol. 37, pp. 1-6, 1998. Bertinchamps F., Treinen M., BlangenoiN. s, Mariage E. and Gaigneaux E. M., “Positive Effect of NOx on the Performances ofVOx/TiO2-based Catalysts in the Total Oxidation Abatement of Chlorobenzene”, J. Catal., vol. 230, pp. 493-498, 2005. Boer F. P., HegeduL. L. s, Gouker T. R. and Zak K. P.,“Controlling Power Plant NOx Emissions”, Chemtech, May,312-319, 1990. Bond, G.. C.,“ Heterogeneous Catalysis: Principles and Applications”, 2nd ed. Oxford University Press Oxford, 1987. Boehm, H. P., “Some aspects of the surface chemistry of carbon blacks and other carbons”. Carbon, vol. 32, 759-769, 1994. Bosch H. and Janssen F., “De NOx Catalyst Review”, Catal.Today, Vol. 2, pp. 369-532, 1988. Brauer, H. and Varma, Y. B. G., “Air Pollution Control Equipment”, Springer-Verlag Berlin, Heidelberg, 1981. Briens, C. L., Bergougnou, M. A., Inculet, I. I., Baron, T., and Hazlett, J. D., “Size distribution of particles entrained from fluidized-beds – electrostatic effects”, Powder Technol., Vol. 70, pp. 57-62, 1992. Burch, R.; Urbano, F. J.; Loader, P. K. Methane Combustion Over Palladium Catalysts: The Effect of Carbon Dioxide and Water on Activity. Appl. Catal., A, Vol.123, pp. 173-182, 1995. Butt, H. J., Cappella, B., Kappl, M., “Force measurements with the atomic force microscope: Technique, interpretation and applications”. Surface Science Reports, Vol. 59, pp. 1–152, 2005. Carpenter, A.M. “Switching to cheaper coals for power generation”, IEA Coal Research, report CCC/01, London, 1998 Centi, G., Passarini, N., Perathoner, S., Riva C. Combined DeSOJDeNO, Reactions on a Copper on Alumina Sorbent-Catalyst. 2. Kinetics of the DeSO, Reaction. Ind. Eng. Chem. Res. Vol.42, pp. 1956-1963, 2007 Centi, G.; Passarini, N.; Perathoner, S.; Riva, A.; Stella, G. Combined DeSOX/DeNOX Reactions on a Copper on Alumina Sorbent-Catalyst. 3. DeNOX Behavior as a Function of the Surface Coverage with Sulfated Species. Ind. Eng. Chem. Res., Vol. 31, pp 1963-1970, 1992. Chen, J. C.; Wey, M. Y.; Yeh, C. L.; Liang, Y. S. Simultaneous Treatment of Organic Compounds, CO, and NOx in the Incineration Flue Gas by Three-way Catalyst. Appl. Catal. B, Vol. 48, pp. 25-32, 2004. Cheng, Y. H. and Tsai, C. J., “Factors influencing pressure drop through a dust cake during filtration”, Aerosol Sci. Tech., Vol. 12, pp. 456-459, 1998. Chiang B. C., Wey M. Y., Liu K Y " Filtration of fly ash by a fluidized bed adsorber" J.AWMA. Vol.55,pp.181-193, 2005. Chiang, B. C., Wey, M. Y. and Liu, K. Y., “Filtration of fly ash using a fluidized-bed filter”, J. AWMA., Vol. 55, pp. 181-193, 2005. Chiang, B. C., Wey, M. Y. and Yang, W. Y., “Control of incinerator organics by fluidized bed activated carbon adsorber”, J. Environ. Eng., ASCE., Vol. 126, pp. 985-992, 2000. Chiang, B. C., Wey, M. Y. and Yeh, C. L., “Control of Acid Gases Using a Fluidized Bed Adsorber”, J. of Hazardous Materials, Vol. 101, pp.259-272, 2003b. Chiang, B. C., Wey, M. Y., Yang, W. Y. and Lu, C. Y., “Simultaneous Control of Metals and Organics Using a Fluidized Bed Adsorber”, Environmental Technology, Vol. 24, pp.1103-1115, 2003a. Chitester, D. C., Kornosky, R. M., Fan, L.S. and Danko, J. P., “Characteristics of fluidization at high pressure”, Chem. Eng. Sci., Vol. 39, pp. 253-261, 1983. Cho S., “Properly Apply Selective Catalytic Reduction for NOx Removal”, Chem. Eng. Prog., Jan., 39-45, 1994. Choi, J. H., Choi, K. B., Kim, P., Shun, D. W. and Kim, S. D., “The Effect of Temperature on Particle Entrainment Rate in a Gas Fluidized Bed”, Powder Technology, Vol. 92, pp. 127-133, 1997. Choi, J. H., Son, J. E. and Kim, S. D., “Solid entrainment in fluidized-bed combustors”, J. Chem. Eng. Jpn., Vol. 22, pp. 597-606, 1989. Choi, J. H., Son, J. E., and Kim, S. D., “Bubble size and frequency in gas fluidized beds”, J. Chem. Eng. Jpn., Vol. 21, pp. 171-178, 1988. Choi, J. H., Suh, J. M., Chang, I. Y., Shun, D. W., Yi, C. K., Son, J. E. and Kim S. D., “The Effect of Fine Particles on Elutriation of Coarse Particles in a Gas Fluidized Bed”, Powder Technology, Vol. 121, pp. 190-194, 2001. Chou, C. S., Tseng, C. Y., Smid, J., Kuo, J. T. and Hsiau, S. S., “Numerical Simulation of Flow Patterns of Disks in the Asymmetric Louvered-Wall Moving Granular Filter Bed’, Powder Technol., Vol. 110, pp. 239-245, 2000. Chu, W., and Windawi, H., “Control VOCs via Catalytic Oxidation”, Chemical Engineering Progress, Vol.92, pp. 37-43, 1996. Ciemat. “Flue gas cleaning” European Commission DG XVII Clean Coal Technology Handbook, Section 5, Madrid/Brussels, 1998 Clift, R. and Grace, J. R., “Fluidization”, Academic Press, London, 1985. Clift, R., “Current Problems in Hot Gas Cleaning”, Summary of Meeting at University of Surrey, September 1983. Clift, R., Ghadiri, M., Thambimuthu, K. V., “Progress in Filtration and Separation”, Vol 2, Wakeman, R.J. ed, Elsevier, Amsterdam, 1981. Clift, R., Hydrodynamics of Bubbling fluidized Bed, Gas Fluidization Technology. Geldart, D. ed., John Wiley & Sons, New York, 1986. Coelho, M. C., Harnby, N., “The effect of humidity on the form of water retention in a powder”, Powder Tech. Vol. 20, pp. 197-200, 1978. Cook MG, Mcintyre NS. “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper” Anal Chem, Vol. 47, pp 2208-2213, 1975. Cook, J. L., Khang, S. J., Lee, S. K. and Keener, T. C., “Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber”, Powder Technol., Vol. 89, pp. 1-8, 1996. Cooper, C. D. and Alley, F. C., “Air Pollution Control”, Central Book Publishing Company, 1996. Coury, J. R., Thambimuthu, K. V. and Clift, R., “Capture and rebound of dust in granular bed gas filters”, Powder Technol., Vol. 50, pp. 253-265, 1987. Darton, R. C., La Nauze, R. D., Davidson, J. F. and Harrison, D., “Bubble growth due to coalescence in fluidized beds”, Trans. Instn. Chem. Eng., Vol. 55, pp. 274-280, 1977. Davidson, J. F., Harrison, D., “Fluidised Particles”, Cambridge University press, Cambridge, 1963. Davies, C. N., “Air Filtration”, Academic Press, London, 1973. Davini P.” Desulphurization properties of active carbons obtained from petroleum pitch pyrolysis”. Carbon, 37, 1363–71, 1999. Delebarre, A., Bitaud, B. and Regnier, M. C., “Gas-solid suspensions flowing through a granular bed”, Powder Technology, Vol. 91, pp. 229-236, 1997. Davini, P., “Desulphurization Properties of Active Carbons Obtained from PetroleumPitch Pyrolysis”, Carbon, Vol. 37, pp. 1363-1371, 1999. Doganoglu, Y., Jog, V., Thambimuthu, K. V. and Clift, R., “Removal of fine particles from gases in fluidized beds”, Trans. IChemE., Vol. 56, pp. 239-248, 1978. Doganoglu, Y., Ph. D. Dissertation, McGill University, 1975. Fayed M. E., Otten, L., “Handbook of Powder Science & Technology”, Chapman & Hall, New York, 1977. Fayed, M. E. and Otten, L., “Handbook Of Powder Science & Technology”, Chapman & Hall, New York, 1997. Fisher R. A., “On the capillary forces in an. ideal soil; correction of formula given by WB HAINES”, J. Agric. Sci. Vol. 16, pp. 492-505, 1926. Forsythe, W. L. and Hertwig, W. R., “Attrition characteristics of fluid cracking catalysts”, Ind & Eng. Chem., Vol. 41, pp. 1200-1206, 1949. Friedlander, S. K. “Smoke, Dust and Haze”, John Wiley and Sons, New York, 1976. Galvez, M.E., Lazaro, M.J,. Moliner, R., “Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide”Catalysis Today, Vol. 102-103, pp. 142-147, 2005. Geldart, D. and Wong, A. C. Y., “Entrainment of Particles from Fluidized Beds of Fine Powders”, AIChE Symp. Ser., Vol. 83, pp. 1-9, 1987. Geldart, D., “Gas Fluidization Technology”, John Wiley & Sons, New York, 1986. Geldart, D., “Gas Fluidization Technology”, John Wiley and Sons, 1986. Geldart, D., “The effect of particle size and size distribution on the behaviour of gas-fluidiesed beds ”, Powder Technol., Vol. 59, pp. 279-284, 1981. Geldart, D., “The effect of particle size and size distribution on the behaviour of gas-fluidised beds”, Powder Technol. Vol. 6, pp. 201-215, 1972. Geldart, D., Baeyens, J., “The design of distributors for gas fluidized beds”, Powder Technol., Vol. 42, pp 67-78, 1985. Geldart, D., Baeyens, J., Pope, D. J., Wijer, P. V. D., “Segregation in beds of large particles at high velocities”, Powder Technol., Vol. 30, pp195-205, 1981. Geldart, D., Harnby, N. and Wong, A. C., “Fluidization of cohesive powders”, Powder Technol., Vol. 37, pp. 25, 1987. George, S. E. and Grace, J. R., “Entrainment of particle from aggregate fluidized beds”, AIChE Symp. Ser., Vol. 74, No. 176, pp. 67-72, 1978. George, S. E. and Grace, J. R., “Entrainment of Particles from a Pilot Scale Fluidized Bed”, Can. J. Chem. Eng., Vol. 59, pp. 279-284, 1981. Ghadiri, M., Seville, J. P. K. and Clift, R., “Fluidised bed filtration of gases at high temperatures”, Trans IChemE., Vol. 71(A), pp. 371-381, 1993. Gullett, B. K., Lemieux, P. M. and Dunn, J. E., “Role of combustion and sorbent parameters in prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran formation during waste combustion”, Environ. Sci. Technol., Vol. 28, pp. 107-118, 1994. Haemers G, Verbist JJ, Maroie S. Surface oxidation of polycrystalline [alpha] (75%Cu/25%Zn) and [beta](53%Cu/47%Zn) brass as studied by XPS: Influence of oxygen pressure. Appl Surf Sci, Vol. 17, pp 463-476, 1984. Han S, Chen HY, Chu YB, Shiha HC. “Phase transformations in copper oxide nanowires.” J Vac Sci Technol B, Vol. 23, pp. 2557-2560, 2005. Hatate, Y., King, D. F., Migita, M., and Ikari, A. J., “Behavior of bubbles in a semi-cylindrical fluidized-bed”, Chem. Eng. Jpn., Vol. 18, pp. 99-104, 1985. Hendrickson, G., “Electrostatic and gas phase fluidized bed polymerization reactor wall sheeting”, Chemical engineering Science, Vol. 61, pp. 1041-1064, 2006. Henriquez, V. and Macias-Machin, A., “Hot gas filtration using a moving bed heat exchanger-filter,” Chem. Eng. Process., Vol. 36, pp. 353-361, 1997. Hesketh, H. E., “Air Pollution Control”, Technomic Publishing Company, Inc., 1991. Hinds, W. C., “Aerosol Technology”, John Wiely & Sons, New York, 1999. Horio, M., Hsieh, Y. S. and Muchi, I., “Elutriation and Particle Transport Through the Freeboard of a Gas-Solid Fluidized Bed”, in “Fluidization”, Grace, J. R. and Matsen, J. M. (eds), Cambridge University Press., New York, 1980. Horio, M., Taki, A., Hsieh, Y.S., Muchi, I., in “Fluidization”, Grace, J.R., Matsen, J.M. (eds), Plenum press, New York, London, 25, 1980. Hsiau, S. S., Smid, J., Tsai, F. H., Kuo, J. T. and Chou, C. S., “Velocities in moving granular bed filters”, Powder Technol. Vol. 114, pp. 205-212, 2001. Hsiau, S. S., Smid, J., Tsai, H. H., Kuo, J. T. and Chou, C. S., “Flow patterns and velocity profiles of granules in dorfan impingo filters for gas cleanup”, Chem. Eng. Sci., Vol. 55, pp. 4481-4494, 2000. Hua, W. and Gao, Z., “Catalytic combustion of n-pentane on Pt supported on solid superacids”, Applied Catalysis B: Environmental, Vol.17, pp. 37-42, 1998. Huang, Z.; Liu, Z.; Zhang, X.; Liu, Q.; Inhibition Effect of H2O on V2O5/AC Catalyst for Catalttic Reduction of NO with NH3 at Low Temperature. Appl. Catal. B, Vol. 63, pp. 260-270, 2006. Huilin, L., Guangbo, Z., Rushan, B., Yongjin, C. and Gidaspow, D., “A Coal Combustion Model for Circulating Fluidized Bed Boilers”, Fuel, Vol. 79, pp. 165-172, 2000. Irfan, M.F., Kim, S.D., Usman, M.R., Modeling of NO Removal over CuO/γ-Al2O3 Catalyst in a Bubbling Fluidized Bed Reactor. Ind. Eng. Chem. Res. Vol. 48, pp. 7959–7964, 2009. Israelachvili, J.N., “Intermolecular and Surface Forces”, Academic Press, London, 1991. Jeong, S. M. and Kim, S. D., “Removal of NOX and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in aFluidized-Bed Reactor.” Ind. Eng. Chem. Res., Vol. 39, pp. 1911-1916, 2000. Jeong, S. M.; Jung, S. H.; Yoo, K. S.; Kim, S. D. “Selective Catalytic Reduction of NO by NH3 over Bulk Sulfated CuO/c-Al2O3 Catalyst.” Ind. Eng. Chem. Res., Vol. 38, pp. 2210-2215, 1999. Jeong, S.M. and Kim, S.D. Removal of NOX and SO2 by CuO/c-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor. Ind. Eng. Chem. Res. Vol. 39, pp. 1911-1916, 2000. Jiang, P., Bi, H., Liang, S.-C., Fan, L.-S., “Hydrodynamic behavior of circulating fluidized bed with polymer particles”, A.I.Ch.E. Journal, Vol. 40, pp. 193–206, 1994. Kamiya, H., Deguchi, K., Gotou, J. and Horio, M., “Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures”, Powder Technol., Vol. 118, pp. 160-165, 2001. Kanari N, Mishra D, Gaballah I, Dupre B. “Thermal decomposition of zinc carbonate hydroxide”, Thermochim Acta, Vol. 410, pp. 93–100, 2004. Kato, K., Takarada, T., Matsuo, N., Suto, T. and Nagawa, N., “Residence-time distribution of fine particles in a powder-particle fluidized bed. Int. Chem. Eng., Vol. 34, pp. 605-610, 1994. Kilpinen, P. “Typen oksidien muodostuminen ja hajoaminen”, Chapter 9 in: “Polttoja palaminen”, R. Raiko et al. (Eds.), IFRF, Gummerus, Jyvaskyla, Finland, 1995. Kilpinen, P., Aho, M., Seetula, J., Hupa, M “Gas phase chemistry of NOx and N2Oat pressurised combustion between temperatures 700 and 1000 oC” Proc. of the 6th Int.Workshop on Nitrous oxide emissions”, Turku, Finland , pp. 333-344, June 1994. Kilpinen, P., course material “Chemistry of Combustion Processes – Part 1”, May 2000, Abo Akademi University, Combustion Chemistry Research Group, Turku, Finland, 2000. Kilpinen, P., Hupa, M. “Homogeneous N2O chemistry at fluidised bed combustion:a kinetic modelling study” Combustion and Flame ,Vol. 85, pp. 94-104, 1991. Kilpinen, P., Norstrom, T., Mueller, C., Kallio, S., Hupa, M. “Homogeneous NO and N2O chemistry in FBC” Proc. of the 38th IEA FBC meeting, Savannah (GA) May 1999. Kiovsky J. R., Koradia and P. B. Lin C. T., “Evaluation of a New Zeolitic Catalyst for NOx Reduction with NH3”, Eng. Chem. Pro. Res. Dev., vol. 19, 218-225, 1980. Kirsh A.A., Stechkina I.B. “The theory of aerosol filtration with fibrous filters ” Fundamental of Aerosol Science, P. 165, 1978. Knettig, P. and Beeckmans, J. M., “Capture of monodispersed aerosol particles in a fixed and in a fluidized beds”, Can. J. Chem. Eng., Vol. 52, pp. 703-706, 1974. Knoblauch, K., Richter, E. and Juntgen, H., “Application of Active Coke in Processes of SO2- and NOx-Removal from Flue Gases”, Fuel, Vol. 60, pp. 832-837, 1981. Knowlton, T. M., “Engineering Foundation”, in “Fluidization” Ⅶ, Potter, O. E. and Nicklin, D. J. (eds.), New York, pp. 27, 1992. Knowlton, T. M., Findlay, J. and Sishtla, C., Final Rep. DOE/MC22061-2883, DE90009699, US Department of Energt, Morgantown Energy Technology Center, Morgantown, WV, 1990. Kobayashi, M. and Hagi, M.,“V2O5-WO3/TiO2-SiO2-SO42− catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH3 and in the oxidation of SO2”.Appl. Catal. B., Vol. 63, pp 104-113, 2006. Kralchevsky, P. A., Denkov, N. D., “Capillary forces and structuring in layers of colloid particles”, Current opinion in Colloid & Interface Science, Vol. 6, pp. 383-401, 2001. Kunii, D. and Levenspiel, O., “Fluidization Engineering”, Butter-worth-Heinemann Publishing, Inc, 2nd Ed., 1991. Kuo, J. T., Smid, J , Hsiau, S. S. and Chou, C. S., “Granular Bed Filter Technology”, Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, Vol. 22, No. 1, pp. 17-34, 1998. Lee I.Y., Kim D.W., Lee J.B., and Yoo K.O., A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, Vol. 90, pp. 267–272, 2002. Li, J. and Kato, K., “A Correlation of the Elutriation Rate Constant for Adhesion Particles (Group C Particles)”, Powder Technology, Vol. 118, pp. 209-218, 2001. Li, X., Yan, J., Ni, M., Cen, K., “Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs)”, Chemical Eng. J., Vol. 84, pp161-166, 2001. Linak, W. P. and Peterson, T. W., “Effect of coal type and residence time on the submicron aerosol distribution from pulverized coal combustion”, Aerosol Science and Technology, Vol. 3, pp. 77-95, 1984. Lisovskii A, Semiat R, Aharoni C. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed. Carbon, Vol 35, pp 1639–1643, 1997. Liu K.Y. and Wey M.Y., Dynamic purification of coal ash by a gas–solid fluidized bed. Chemosphere, Vol 60, pp 1341–1348, 2005. Liu K.Y. and Wey M.Y., Filtration of fly ash using fluidized bed at 300–500 ℃. Fuel, Vol 86, pp. 161-16, 2007a. Liu, K.Y. and Wey, M.Y., “Filtration of nano particle by a gas-solid fluidized bed ” J. of hazardous material,Vol 147, pp.618-624, 2007b Liu, K.Y., Rau, J.Y., Wey, M.Y.,“The collection of SiO2, Al2O3 and Fe2O3 particles using a gas-solid fluidized bed ” J. of Hazar. Mater., Vol171, pp.102-110, 2009. Lizzio, A. A. and DeBarr, J. A., “Effect of Surface Area and Chemisorbed Oxygen on the SO2 Adsorption Capacity of Activated Char”, Fuel, Vol. 75, No. 13, pp. 1515-1522, 1996. Llop, M. F., Casal, J. and Arnaldos, J., “Expansion of gas-solid fluidized beds at pressure and high temperature”, Powder Technol., Vol 107, pp. 212-225, 2000. Lu, C. Y., Wey, M. Y.,; Chen, L.I.,“Application of Polyol Process to Prepare AC-Supported Nanocatalyst for VOC Oxidation.” Appl. Catal.,A, Vol. 325, pp. 163-170, 2007. Ma, X. and Kato, K., “Effect of Interparticle Adhesion Forces on Elutriation of Fine Powders from a Fluidized Bed of a Binary Particle Mixture”, Powder Technology, Vol. 95, pp. 93-101, 1998. Ma, X., Nakagawa, N., Cuo,Q., Xu, G., Kato K., Removal of SO2 from Flue Gas using a New Semidry Flue Gas Desulfurization Process with a Powder-Particle Spouted Bed. THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Vol. 77, pp. 356-362, 1999. Maroto-Valer MM, Dranca I, Lupascu TI, Nastas R. Effect of adsorbate polarity on thermodesorption profiles from oxidized and metal-impregnated activated carbons, Carbon, Vol. 42, pp. 2655–2659, 2004. Matsuda, S. and A. Kato, "Titanium Oxide Based Catalyst-A Review",Appl. Catal., Vol. 8, pp. 149-165, 1983. Maurer, S., Mersmann, A., Peukert, W., “Henry coefficients of adsorption predicted from solid Hamaker constants”, Chemical engineering Science, Vol. 56, pp. 3443-3453, 2001. Merrick, D., and Highley, J., “Particle size reduction and elutriation in a fluidized bed process”, AIChE Symp. Ser., Vol. 70, pp. 366-378, 1974. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., Yasutake, A., Removal of SOx and NOx over activated carbon fibers. Carbon, Vol. 38, pp. 227–239, 2000. Mori, S., and Wen, C.Y., “Estemation of bubble diameter in gaseous fluidized beds. A.I.Ch.E. J. Vol. 21, n1, pp. 109-115, 1975. Mustonen, J. P. S., Bossart, J. and Durner, M. W., Proc. Int. Conf. on Fluidized Bed Combustion, Montreal, Canada, Vol. 1, pp. 475, 1991. Park, A. -H. A., Bi, H. T., Grace, J. R., Chen, A., “Modeling charge transfer and induction in gas–solid fluidized beds”, Journal of Electrostatics Vol. 55, pp. 135–158, 2002. Pell, M., “Handbook of Powder Technology”, Vol. 8, Williams, J. C. and Allen, T. (eds.), Elsevier, Amsterdam, 1990. Pemberton, S. T. and Davidson, J. F., “Elutriation from Fluidized-Beds. 2. Disengagement of Particles from Gas in the Freeboard”, Chem. Eng. Sci., Vol. 41, No. 2, pp. 253-262, 1986. Peters, M. H., Fan, L.-S. and Sweeny, T. L., “Simulation of particulate removal in gas-solid fluidized beds”, AIChE J., Vol. 28, pp. 39-49, 1982. Porta P, Rossi SD, Ferraris G, Jacono ML, Minelli G, Moretti G. Structural characterization of malachite-like coprecipitated precursors of binary CuO-ZnO Catalysts. J Catal, Vol. 109, pp. 367-377, 1988. Rabinovich Y. I., Adler, J. J., Ata, A. Singh, R. K., Moudgil, B. M., “Adhension between nanoscale rough surface: I. Role of asperity geometry”, J. of Colloid and Interface Science, Vol. 232, pp. 10-16, 2000. Raymundo-Pinero, E., Cazorla-Amoros, D., Salinas-Martinez de Lecea, C. and Linares-Solano, A., “Factors Controlling the SO2 Removal by Porous Carbons: Relevance of the SO2 Oxidation Step”, Carbon, Vol. 38, pp. 335-344, 2000. Rabinovich Y. I., Adler, J. J., Esayanur, M. S., Ata, A., Singh, R. K., Moudgil, B. M., “Capillary forces between surfaces with nanoscale roughness”, Advances in Colloid and Interface Science. Vol. 96, pp. 213-230, 2002. Ray, Y. C., Jiang, T. S. and Wen, C. Y., “Particle attrition phenomena in a fluidized bed”, Powder Technol., Vol. 49, pp. 193-206, 1987. Ramis, G.; Busca, G.; Forzatti, P., “Spectroscopic Analysis of Titania Tungsta Vanadia DeNOxing Catalysts”. Appl. Catal. B., Vol. 1, pp. 9-13. 1992 Revel, J., Gatumel, C., Dodds, J. A., Taillet, J., “Generation of static electricity during fluidization of polyethylene and its elimination by air ionization”, Powder Technol. Vol. 135–136, pp. 192–200, 2003. Rodrĺguez, J. M., Sanchez, J. R., Alvaro, A., Florea, D. F. and Estevez, A. M., “Fluidization and Elutriation of Iron Oxide Particles. A Study of Attrition and Agglomeration Processes in Fluidized Beds”, Powder Technology, Vol. 111, pp. 218-230, 2000. Rubio, B. and Izquierdo, M. T., “Influence of Low-Rank Coal Char Properties on Their SO2 Removal Capacity from Flue Gases: I. Non-Activated Chars”, Carbon, Vol. 35, No. 7, pp. 1005-1011, 1997. Rubio, B., Izquierdo, M. T. and Mastral, A. M., “Influence of Low-Rank Coal Char Properties on Their SO2 Removal Capacity from Flue Gases. 2. Activated Chars”, Carbon, Vol. 36, No. 3, pp. 263-268, 1998. Santana, D., Rodriguez, J. M. and Macias-Machin, A., “Modelling Fluidized Bed Elutriation of Fine Particles”, Powder Technology, Vol. 106, pp.110-118, 1999. Seville, J. P. K. and Clift, R., in J. P. K. Seville, “Gas Cleaning Demanding Applications”, Chapter 9, Blackie Academic & Professional, London, 1997. Shen GC, Fujita S, Matsumoto S, Takezawa N. Steam reforming of methanol on binary Cu/ZnO catalysts: Effects of preparation condition upon precursors, surface structure and catalytic activity. J Mol Catal A, Vol. 124, pp. 123-36, 1997. Shin M.K., Kim, E.M., Koo, B.S., Han, G.Y., “Entrainment Charactteristics of Fine Particle in Cylindrical and Conical Inert-Medium Fluidized-bed” Ind. Eng. Chem. Res., Vol. 46, pp. 1408-1414, 2007. Smolders, K. and Baeyens, J., “Elutriation of Fines from Gas Fluidized Beds: Mechanisms of Elutriation and Effect of Freeboard Geometry”, Powder Technology, Vol. 92, pp. 35-46, 1997. Spivey, J. L., “Complete catalytic oxidation of volatile organics ”, Industrial Engineering. Chemical Research Vol.26, pp. 2165-2180, 1987. Spurny, K. R., “Advances In Aerosol Filtration”, Lewis Publishers,New York, 1998. Tasirin, S. M. and Geldart, D., “Entrainment of FCC from Fluidized Beds ¾ A New Correlation for the Elutriation Rate Constants Tamura, Y., Hishinuma, Y., Hisamura, T. and Mori, A., Hitachi Hyouron, Vol. 1968, pp. 78-82, 1968. Theodore, L. and Buonicore, A. J., “Air Pollution Control Equipment”, Prentice Hall, Inc., 1982. Tien, C., “Granular Filtration of Aerosols and Hydrosols”, Butterworths, London, 1989. Tseng H.H., Wey M.Y., “Study of SO2 adsorption and Thermal regeneration over a spent actived Carbon-supported Copper Oxide Catalyst” Carbon, Vol 42/11 pp. 2269-2278, 2004. Tseng, H.H., Wey, M.Y. and Fu, C.H., “Carbon material as catalyst supports for SO2 oxidation: Catalytic activity of CuO/AC”, Carbon, 41, 139-149, 2003a. Tseng, H.H., Wey, M.Y., Fu C.H., Liang Y.S., Chen K.Hao, “Catalytic treating of SO2, NO, HCl from incineration flue gas over activated carbon supported metal oxides”, Carbon, Vol. 41(5), pp. 1079-1085, 2003b. Tseng, H.H., Wey, M.Y., Lin, C.L. and Chang, Y.C., “Pore structure effects on Ca-based sorbents sulfation capacity at medium temperatures: Activated carbon as sorbent/catalyst support”, J. of Air and Waste Management Association, Vol. 52, pp. 1281-1287, 2002. Topsoe, N. Y., Slabiak, T., Clausen, B. S., Srnak, T. Z. and Dumesic, J. A., “Temperature-programmed desorption/reaction and in situ spectroscopic studies of vanadia/titania for catalytic reduction of nitric oxide”, J. Catal., Vol. 134, pp. 742-746, 1992. Wagner, J.F., Moulder, J.F., Davis, L.E., Riggs, W.M., Perking-Elmer Corporation, Physical Electronics Division (end of book). Wey, M.Y., Chen, K.H., and Liu, K.Y., The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed. J. of Hazar. Mater., Vol. B121, pp. 175–181, 2005. Wey, M.Y., Tseng, H.H., Fu, H.H. and Chen, K.H., “Catalytic Oxidization of SO2 from incineration flue gas over bimetallic Cu-Ce catalysts” Fuel,Vol. 82, pp. 2285-2290, 2003. Wey, M.Y., Chen, J.C., Huang, H.C. and Yeh, C.L., “Oxidation of organic pollutants in incineration flue gas by a fluidized palladium catalyst”, Combustion Science and Technology, Vol. 175, pp. 1211-1236, 2003. Wey, M.Y., Yan, M.H. and Chen, J.C., “Treatment of hazardous sorbents generated from the adsorption of heavy metals during incineration”, J. of Hazar. Mater., Vol. 73, pp. 19-37, 2000a. Xu, G., Gao, S., Suzuki, H., Wang, B., Ma, X., Nakagawa, N., Kato K., “An Innovative Combined Desulphulphurization/Denttration using a Powder-Particle Fluidized-bed.” IChemE, Vol. 77, pp. 77-86, 1999. Yang, J., Mestl, G., Herein, D., Schlogl, R. and Find, J., “Reaction of NO with Carbonaceous Materials 1. Reaction and Adsorption of NO on Ashless Carbon Black”, Carbon, Vol. 38, pp. 715-727, 2000a. Yang, J., Mestl, G., Herein, D., Schlogl, R. and Find, J., “Reaction of NO with Carbonaceous Materials 2. Effect of Oxygen on the Reaction of NO with Ashless Carbon Black”, Carbon, Vol. 38, pp. 729-740, 2000b. Yang, J., Sanchez-Cortezon, E., Pfander, N., Wild, U., Mestl, G., Find, J. and Schlogl, R., “Reaction of NO with Carbonaceous Materials: III. Influence of the Structure of the Materials”, Carbon, Vol. 38, pp. 2029-2039, 2000c. Yeh,H.C. and Liu, B.Y.,“Aerosol Filtration by Fibrous Filters ” J. Aerosol Sci.,Vol 5, pp.191-217, 1974 Yerushalmi, J., Kolodney, M., Graff, R. A. and Squires, A. M., “Agglomeration of Ash in Fluidized Beds Gasifying Coal: The Godel Phenomenon”, Science, Vol. 187, pp. 646-648, 1974. Zevenhoven, R. and Heiskanen, K., Helsinki Univ of Techn, Espoo, Finland, 6-8, 2004. Zevenhoven, C. A. P., “Particle Charging and Granular Bed Filtration for High Temperature Application”,PhD Thesis, Delft University of Technology, Delft, Netherlands, 1992. Zhang, J.; Xu, H.; Ge, Q.; Li, W. Highly Efficient Ru/MgO Catalysts for NH3 Decomposition: Synthesis, Characterization and Promoter Effect. Catal. Commun., Vol.7, pp. 148-155, 2006. 白景成,「循環式顆粒床除塵之研究」,逢甲大學化學工程研究所博士論文,2005。 行政院環境保護署,「國家環境保護計畫修正專案工作計畫」,2005。 吳石乙 編,粉粒體技術,逢甲大學,1999。 吳以壯,「以選擇性觸媒還原技術同時去除NO 及VOCs之效率測試研究」,國立交通大學環境工程研究所碩士論文,2005。 林家欣,「釩鈦觸媒孔隙擴散限制及表面酸性之研究」,國立交通大學環境工程研究所博士論文,2003。 曾惠馨,「活性碳擔持銅觸煤對二氧化硫吸附特性之研究」,國立中興大學環境工程研究所博士論文,2003。 楊文毅,「鈀觸媒氧化焚化廢氣中有機物之研究」,國立中興大學環境工程研究所碩士論文,2000。 郝吉明、馬廣大,“空氣污染控制工程”,科技圖書股份有限公司,1995。 章裕民、洪朝陽、李昌憲,“Study on Elutriation from Bubbling Fluidized Bed Incineration – A Correlation for Elutriaiton Rate Constant”,第十六屆廢棄物處理技術研討會,2-13,2001。 錢建嵩,黃正中,楊玉樹,歐建志,張瑞顯,吳耿東,游逸將,流化床技術,高立圖書有限公司,1992。 劉光宇,「氣固式流體化床過濾粒狀污染物的動態變化與影響參數之研究」,國立中興大學環境工程研究所博士論文,2006。 蔣博欽,“以流體化床控制焚化廢氣中污染物之研究”,中興大學博士論文,2002。 賴正昕, 劉國棟, 黃自立, ”選擇性觸媒還原法排煙脫硝系統控制實務”, 工業污染防治, 第57 期, 110-126,1996。
本研究使用流體化觸媒反應器控制廢氣中的一氧化氮(NO)、二氧化硫(SO2)及粒狀污染物,主要以燃煤電廠廢氣組成作一系列探討。探討內容主要包括:(1)氧化銅觸媒(CuO/AC)的改質與選擇,使用不同溶劑對擔體作預處理,並使用含浸法製備所需觸媒;(2)探討流體化觸媒反應器對個別汙染物(NO、SO2及飛灰)的控制;及(3)探討流體化觸媒反應器同時控制 NO或SO2和飛灰之研究。
實驗結果顯示,用硝酸(AC-N)及硫酸(AC-S)預處理活性碳擔體,可以增加酚基和羧酸基的含量,可以提升觸媒活性相的分散性及控制CuO晶相大小(20~100 nm)。此外,改質CuO觸媒的活性依前處理的擔體依序排列如下:AC-N>AC-S>AC。此外,當增加觸媒表面酚基和羧酸基的含量時,可以增加觸媒對還原劑NH3的吸附能力,這行為可以提升觸媒對NO的轉換效率。當使用流體化觸媒反應器對個別汙染物控制時,對NO、SO2及飛灰的去除效率分別為57%、84%及74%。然而,當曝入在飛灰濃度約為1000 mg m-3模擬氣體時,NO及SO2的去除效率則會降低9~17%,當操作時間增加時,觸媒表面活性相會被覆蓋,進而導致觸媒物理性的失活現象。
添加4及40 μm的SiO2及Al2O3顆粒時,對流體化觸媒反應器同時控制NO、SO2及顆粒的影響顯示出增加飛灰濃度會抑制觸媒的活性。且經由氮吸附儀(BET)及表結構分析(SEM)可以證實4 μm的SiO2顆粒會造成觸媒中孔(meso-)及巨孔(marco-)孔洞的堵塞;而Al2O3顆粒則會濾除於床質內,較少堵塞於觸媒表面。此外,當增加水汽濃度時,會增加飛灰過濾的效率;但煙道中的水汽及飛灰會抑制觸媒對酸性氣體的活性,進而導致去除效率的降低。由粒徑分析(PSD)的結果指出,當水汽濃度增加時,出口粒徑會以大顆粒為主:且BET分析指出,觸媒表面堵塞現象因增加水汽含量而減少。顯示水汽濃度濃度增加有利於小顆粒凝聚及成大顆粒,因此增加粒狀物的去除效率。

In this study, a fluidized-bed catalytic reactor was applied for the removals of NO, SO2 and fly ash in a simulated condition of coal-fired power plant flue gas. The objectives of this study are included three parts. First, the modified and selected of catalyst, AC supports were modified by different solutions and impregnated with Cu, and analyzed their properties. Second, the removals of single pollutant such as NO, SO2, and fly ash by fluidized-bed catalytic reactor was studied. Finally, the activity of the catalyst for simultaneous removals of NO, SO2, and fly ash was investigated.
Experimental results indicated that AC supports pretreated by HNO3 (AC-N) and H2SO4 (AC-S) increased the amounts of phenol and carboxylic acid groups, and further increased the dispersion and decreased the crystallite sizes of Cu active phases (20~100 nm). The activities of the CuO/AC catalysts on different pretreated AC supports follow the sequence of AC-N > AC-S > AC. The removal efficiency of NO can be improved by the adsorption capacity of NH3 when both phenol and carboxylic acid groups increased on the surface of the catalysts. The removal efficiencies of apart from NO, SO2 and fly ash are about 57%, 84% and 74%, respectively. However, the removal efficiencies of NO and SO2 were decreased to 9-17% after exposure to a concentration 1000 mg m-3 of fly ash. When the operating time was increased, the surface of the catalyst was covered by these fly ashes and resulted in the deactivation of the catalyst.
For an average size of 4 (fine) and 40 (coarse) μm SiO2 and Al2O3 the activities of catalysts for simultaneous removals of NO, SO2, and particles were inhibited with increasing concentration of fly ash. The results of BET and SEM analyses verified meso- and macro-pore volume of the catalyst were obstructed by 4 μm SiO2. However, Al2O3 may become a part of catalyst bed material, and less likely to plug the catalyst surface. The removal efficiency of fly ash was increased with the increased in H2O content, but the activities of catalysts for simultaneous removals of SO2 and particles were inhibited. As the H2O content increased, the particle size distribution (PSD) of fine particles shifted to the coarse particles. The results of BET analyses show the particles obstruction phenomenon of the catalyst volume was lessened with increased H2O content. The aggregation phenomenon of fine particles shifted to the coarse particles may cause increase H2O content content in fluidized-bed catalytic reactor.
其他識別: U0005-1708201015055700
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.