Please use this identifier to cite or link to this item:
標題: 去流體化行為於能源/資源回收過程之影響研究
Energy utilization and pollutant generation through fluidized bed operation: Effect of defluidization
作者: 郭家宏
Kuo, Jia-Hong
關鍵字: Defluidization;去流體化;Agglomeration inhibition;Incineration;Gasification;Heavy metals.;結塊抑制;焚化;氣化;重金屬
出版社: 環境工程學系所
引用: Addink, R., Govers, H.A.J., Olie, K., Desorption behaviour of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere 31 (1995) pp.3945-3950. Al-Otoom, A. Y., Elliott, L. K., Moghtaderi, B., Wall, T. F., The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC. Fuel 84 (2005) pp.109-114. Anthony, E. J., Iribarne A. P., Iribarne J. V., Jia L. Reuse of landfilled FBC residues. Fuel 76 (1997) pp.603-606. Arvelakis, S., Gehrmann, H., Beckmann, M., Koukios, E. G., Agglomeration problems during fluidized bed gasification of olive-oil residue: evaluation of fractionation and leaching as pre-treatments small star, filled. Fuel 82 (2003) pp.1261-1270. Atakül, H., Hilmioğlu, B., Ekinci, E., The relationship between the tendency of lignites to agglomerate and their fusion characteristics in a fluidized bed combustor. Fuel Processing Technology 86 (2005) pp.1369-1383. Baeyens, J., Van Puyvelde, F., Fluidized bed incineration of sewage sludge: a strategy for the design of the incinerator and the future for incinerator ash utilization. Journal of Hazardous Materials 37 (1994) pp.179-190. Bartels, M., Lin W., Nijenhuis J., Kapteijn F., Ommen J. R. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Progress in Energy and Combustion Science 34 (2008) pp.633-666. Barton, R. G., Clark, W. D., Seeker, W. R., Fate of metals in waste combustion systems, Combustion Science and Technology 74 (1990) pp.327-342. Basu, P., Combustion and gasification in fluidized beds. Taylor & Francis Group, 2006. Bhattacharya, S. P., Harttig, M., Control of agglomeration and defluidization during high-alkali, high-sulfur lignites in a small fluidized bed combustor: effect of additive size and type, and role of calcium. Energy & Fuels 17 (2003) pp.1014-1021. Bhattacharyya, S., Rona, J., Donahoe, D. P., Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements. Fuel 88 (2009) pp.1173-1181. Botterill, J. S. M., Fluid-bed heat transfer, Academic press Inc. Ltd. New York, 1975. Brereton, C., Municipal solid waste - incineration, air pollution control and ash management. Resources, Conservation and Recycling 16 (1996) pp.227-264. Buekens, A., Huang, H., Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. Journal of Hazardous Materials 62 (1998) pp.1-33. CEN Technical specification: biomass gasification - tar and particles in producer gases - sampling and analysis. Prepared by CEN task force BT/TF 143 WI CSC 03002.4TC, 2005 Chan, C. C. Y.; Kirk, D. W.; Marsh, H., The behaviour of Al in MSW incinerator fly ash during thermal treatment. Journal of Hazardous Materials 76 (2000) pp.103-111. Chang, F. Y., Wey, M. Y., Comparison of the characteristics of bottom and fly ashes generated from various incineration process. Journal of Hazardous Material 138 (2006) pp. 594-603. Chen, J. C., Wey, M. Y., Lin, Y. C., The adsorption of heavy metals by different sorbents under various incineration conditions. Chemosphere 37 (1998a) pp.2617-2625. Chen, J. C., Wey, M. Y., Liu, Y. F., Chiang, B. C., The dynamic adsorption behaviors of heavy metals on sorbents under various incineration conditions. Journal of environmental engineering ASCE 124 (1998b) pp.776-779. Chen, J. C., Wey, M. Y., Liu, Z. S., Adsorption mechanism of heavy metals on the sorbents during incineration. Journal of environmental engineering ASCE 127 (2001) pp.63-69. Chen, J. C., Wey, M. Y., Ou, W. Y., Capture of heavy metals by sorbents in incineration flue gas. The science of the total environment 228 (1999a) pp.67-77. Chen, J. C., Wey, M. Y., The effect of operating condition on the capture of metals with limestone during incineration. Environmental International 22 (1996) pp.743-752. Chen, J. C., Wey, M. Y., Yan, M. H. The effect of chloride additives on adsorption of heavy metal during incineration, Journal of Air and Waste Management Association 49 (1999b) pp.1116-1120. Chen, J. C., Wey, M. Y., Yan, M. H., Theoretical and experimental study ofmetal capture during incineration process, Journal of Environmental Engineering ASCE 123 (1997) pp.1100-1106. Chen, J.C., Wey, M.Y., Yan, M.H., Theoretical and experimental study of metal capture during incineration process. Journal of Environmental Engineering ASCE 123 (1997) pp.1100-1106. Cheng, J.F., Zeng, H.C., Zhang, Z.H., Xu, M.H., The effects of solid adsorbents on the emission of trace elements, SO2, and NOx during coal combustion. International Journal of Energy Research 25 (2001) pp.1043-1052. Chiang, B. C., Wey, M. Y., Liu, K. Y., Filtration of fly ash by a fluidized bed adsorber, Journal of Air and Waste Management Association 55 (2005) pp.181-193. Chiang, B. C., Wey, M. Y., Yang, W. Y., Lu, C. Y., Simultaneous control of heavy metals and organics using a fluidized bed adsorber. Environmental technology 124 (2003a) pp.1103-1115. Chiang, B. C., Wey, M. Y., Yeh, C. L., Control of acid gases using a fluidized bed adsorber. Journal of hazardous material 101 (2003b) pp.259-272. Chou, J. D., Wey, M. Y., Chang, S. H., Emission of Pb and PAHs from thermally co-treated MSWI fly ash and bottom ash process. Journal of hazardous materials 150 (2008) pp.27-36. Conn, R. E., Laboratory techniques for evaluating ash agglomeration potential in petroleum coke fired circulating fluidized bed combustors, Fuel Processing Technology 44 (1995) pp.95-103. Corella, J., Aznar M.-P., Gil J., Caballero M.A., Biomass gasification in fluidized bed: where to locate the dolomite to improve gasification. Energy & Fuels 13 (1999) pp. 1123. Corella, J., Toledo J. M., Molina G., Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock. Bioresource Technology 99 (2008) pp.7539-7544. Corella, J., Toledo, J.M., Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results. Journal of Hazardous Materials 80 (2000) pp.81-105. Cruise, D. R., Notes on the rapid computation of chemical equilibria. Journal of Physical Chemistry 68 (1964) pp.37-97. Dahlin, R.S.; Dorminey J.R.; Peng, W.; Leonard, R.F.; Vimalchand, P., Energy Fuels, 2009, 23, 785-793. Desorsiers, R. E., Computer techniques for determining flame temperature and composition. Report of the United State Energy Research and Development Administration. (1977) No.(E49-18)-2205 Washington, DC:US department of Energy. Diauddin, R., Hogland, N. W., Marques, M., Nimmermark, S., Moutavtchi, V., Emissions from a controlled fire in municipal solid waste bales. Waste Management 24 (2004) 9-18. Durlak, S. K., Biswas, P., Shi, J. Bernhard, M. J., Characterization of polycyclic aromatic hydrocarbon particule and gaseous emissions from polystyrene combustion. Environmental Science and Technology 32 (1998) pp.2301-2307. Durlak, S.J., Biswas, P., Shi, J., Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. Journal of Hazardous Materials 56 (1997) pp.1-20. Emek, E., Kara, B.Y., Hazardous waste management problem: The case for incineration. Computers & Operations Research 34 (2007) pp.1424-1441. Ergudenler, A., Ghaly, A. E., Agglomeration of alumina sand in a fluidized bed straw gasifier at elevated temperatures. Bioresource Technology 43 (1993) pp.259-268. Fernández Llorente, M. J., Escalada Cuadrado, R., Murillo Laplaza, J. M., Carrasco García, J. E., Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering. Fuel 85 (2006) pp.2081-2092. Fernández Llorente, M.J., Arocas, P. D., Nebot, L. G., García, J.E. C. The effect of the addition of chemical materials on the sintering of biomass ash. Fuel 87 (2008) pp.2651-2658. Ferreira, C., Jensen, P., Ottosen, L., Ribeiro, A., Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Engineering Geology 77 (2005) pp.339-347. Fryda, L. E., Panopoulos K. D., Kakaras E. Agglomeration in fluidised bed gasification of biomass. Powder Technology 181 (2008) pp.307-320. Gauthier, D., Zerguerras, S. and Flamant, G., Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization, Chemical Engineering Journal 74 (1999) pp.181-196. Geldart, D., Type of gas fluidization. Powder Technology 7 (1973) pp.285-292. German, R. M., Sintering theory and practice, John Wiley and Sons, New York, 1996. Ghaly, A. E., Ergüdenler, A., Laufer, E., Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenergy 5 (1993) pp.467-480. Goodarzi, F., Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel 85 (2006) pp.1418-1427. Guidi, W., Tozzini, C., Bonari, E., Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass and Bioenergy 33 (2009) pp.1703-1709. He M., Xiao, Bo, Hu, Z., Liu, S., Guo, X, Luo, S., Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. International Journal of Hydrogen Energy 34 (2009) pp.1342-1348. Ho, T. C., Chen, C., Hopper, J. R., Oberacker, D. A., Combustion Science and Technology 85 (1992) pp.101-116. Ho, T. C., Chen, C., Hopper, J. R., Oberacker, D.A., Metal capture during fluidized bed incineration of wastes contaminated with lead chloride. Combustion Science and Technology 85 (1992) pp.101-116. Ho, T. C., Chen, J. M., Shukla, S., Hopper, J.R., Metal capture during fluidized bed incineration of solid waste. AICHE Symposium 281 (1990) pp.118-126. Ho, T. C., Chu, H. W., Hopper, J. R., Metal volatilization and separation during incineration. Waste Management 13 (1993) pp.455-466. Ho, T. C., Tan, T., Chen, C. Hopper, J. R., Characteristics of metal capture during fluidized bed incineration, AIChE Symposium 281 (1991) pp.118-126. Ho, T.C., Chuang, T.C., Chelluri, S., Lee, Y., Hopper, J.R., Simultaneous capture of metal, sulfur and chlorine by sorbents during fluidized bed incineration. Waste Management 21 (2001) pp.435-441. Jakob, A., Stucki, S.; Struis, R. P. W. J., Complete Heavy Metal Removal from Fly Ash by Heat Treatment: Influence of Chlorides on Evaporation Rates. Environmental Science and Technology 30 (1996) pp.3275-3283. Jung, B., Schobert, H., Viscous sintering of coal ashes: 1. Relationships of sinter point and sinter strength to particle size and composition. Fuel 6 (1991) pp.555-561. Jung, C. H., Matsuto, T., Tanaka, N., Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Management (2005) pp.301-310. Károly, Z., Mohai, I., Tóth, M., Wéber, F., Szépvölgyi, J., Production of glass-ceramics from fly ash using arc plasma. Journal of the European Ceramic Society 27 (2007) pp.1721-1725. Knight, P. C., Seville, J. P. K., Kamiya, H. Horio, M., Modelling of sintering of iron particles in high-temperature gas fluidization. Chemical Engineering Science 55 (2000) pp.4783-4787. Koppatz, S., Pfeifer C., Rauch R., Hofbauer, H., Marquard-Moellenstedt T., Specht, M., H2 rich product gas by steam gasification of biomass with in situ CO2 absorption in a dual fluidized bed system of 8 MW fuel input. Fuel Processing Technolog 90 (2009) pp.914-921. Kosminski, A., Ross, D.P., Agnew, J.B., Reaction between sodium and kaolin during gasification of a low-rank coal. Fuel Processing Technology 87 (2006) pp.1051-1062. Kosminski, A., Ross, D.P., Agnew, J.B., Reaction between sodium and silica during gasification of a low-rank coal. Fuel Processing Technology 87 (2006) pp.1037-1049. Kuchar, D., Fukuta, T., Onyango, M. S., Matsuda, H., Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery. Chemosphere 67 (2007) pp.1518-1525. Kunii, D., Levenspiel, O., Fluidization Engineering, Butter-worth-Heinemann Publishing, Inc, 2nd Ed., 1991. Lasurface Website, Latva-Somppi, J., Moisio, M., Kauppinen, E. I., Valmari, T., Ahonen, P., Tapper, U., Keskinen, J., Ash formation during fluidized-bed incineration of paper mill waste sludge. Journal of Aerosol Science 29 (1998) pp.461-480. Li, C.T., Lee, W. J., Mi, H. H., Su, C. C., Science of the Total Environment 170 (1995) 170 pp.171-183 Lin, C. L., Wey M. Y., You S. D., The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technology 126 (2002) pp.297-301. Lin, C. L., Wey, M. Y., Cheng, H. T., Relationship between pressure fluctuation and organic pollutants with different particle size distributions in a fluidized bed incinerator. Chemosphere 56 (2004) 911-922. Lin, C. L., Wey, M. Y., Statistical and power spectral analysis of quality of fluidization for different particle size distributions at high temperature. Advanced Powder Technology 15 (2004) pp.79-96. Lin, C. L., Wey, M. Y., The effect of mineral compositions of waste on particle agglomeration/defluidization during incineration. Fuel 83 (2004) pp.2335-2343. Lin, C. L., Wey, M. Y., Yu, W. J., Emission characteristics of organic and heavy metal pollutants in fluidized bed incineration during the agglomeration/defluidization process. Combustion and Flame 143 (2005) pp.139-149. Lin, C. L., Wey, M.Y., Lu, C. Y., Prediction of defluidization time of alkali composition at various operating conditions during incineration. Powder Technology 161 (2006) pp. 150-157. Lin, K. L., Chang, C. T., Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. Journal of Hazardous Materials 135 (2006) pp.296-302. Lin, W., Dam-Johansen, K., Frandsen, F., Agglomeration in bio-fuel fired fluidized bed combustors. Chemical Engineering Journal 96 (2003) pp.171-185. Lin, W., Dam-Johansen, K., Frandsen, F., Agglomeration in bio-fuel fired fluidized bed combustors. Chemical Engineering Journal 96 (2003) pp.171-185. Lind, T.; Valmari, T.; Kauppinen, E. I.; Sfiris, G.; Nilsson, K.; Maenhaut, W. Volatilization of the heavy metals during circulating fluidized bed combustion of forest residue. Environmental Science and Technology 33 (1999) pp.496-502. Linjewile, T.M., Manzoori, A.K., Role of additives in controlling agglomeration and defluidization during fluidized bed combustion of high-sodium, high-sulphur low-rank coal. Proceedings of the Engineering Foundation Conference on “Impact of Mineral Impurities in solid fuel combustion” (1997). Liu, K. Y., Wey, M. Y., Dynamic purification of coal ash by a gas-solid fluidized bed. Chemosphere 60 (2005) pp.1341-1348. Liu, Z. S., Lin, C. L., Chou, J. D. Studies of Cd, Pb and Cr distribution characteristics in bottom ash following agglomeration/defluidization in a fluidized bed boiler incinerating artificial waste. Fuel Processing Technology 91 (2010) pp.591-599. Liu, Z. S., Wey M. Y., Lin C. L., The capture of heavy metal from Incineration using the spray dryer integrated with the fabric filter with different additives. Journal of Air and Waste Management Association 51 (2001) pp.983-991. Liu, Z. S., Wey, M. Y., Lin, C. L., Reaction characteristic of Ca(OH)2. HCl and SO2 at low temperature in a spray dryer integrated with a fabric filter. Journal of Hazardous Material 95 (2002) pp.291-304. Mangialardi, T., Paolini, A. E., Polettini, A., Sirini, P., Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. Journal of Hazardous Materials 70 (1999) pp.53-70. Mangialardi, T., Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials B87 (2001) pp.225-239. Mansaray, K. G., Ghaly, A. E., Thermal degradation of rice husks in nitrogen atmosphere. Bioresource Technology 65(1998) pp. 13-20. Manzoori, A. R., Agarwal, P. K., Agglomeration and defluidization under simulated circulating fluidized-bed combustion conditions. Fuel 73 (1994) pp.563-568. Mekki, A., Holland, D., McConville, C.F., Salim, M., An XPS study of iron sodium silicate glass surfaces. Journal of Non-Crystalline Solids 208 (1996) pp.267-276. Mikami, T., Kamiya, H., Horio, M., The mechanism of defluidization of iron particles in a fluidized bed. Powder Technology 89 (1996) pp.231-238. Miura, Y., Kusano, H., Nanba, T., Matsumoto, S., X-ray photoelectron spectroscopy of sodium borosilicate glasses. Journal of Non-Crystalline Solids 290 (2001) pp.1-14. Mudgett, P., Documentation for the NOTS thermodynamic equilibrium program for the IBM 1130 computer. Tech. Rep. of Cabot Corp (1967) 67-OX-11. Mulder, E., Pre-Treatment of MSWI fly ash for useful application. Waste Management 16 (1994) pp.181-184. Natarajan, E., Öhman, M., Gabra, M., Nordin, A., Liliedahl, T., Rao, A. N., Experimental determination of bed agglomeration tendencies of some common agricultural residues in fluidized bed combustion and gasification. Biomass and Bioenergy 15 (1998) pp.163-169. Navarro, R., Guzman, J., Saucedo, I., Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management 27 (2007) pp.425-438. Navarro, R.; Guzman, J.; Saucedo, I., Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Management 27 (2007) pp.425-438. Niessen, W. R., 1995. Combustion and incineration processes: Applications In Environmental Engineering, in: M. Dekker (second ed.), New York. Öhman, M., Boman, C., Hedman, H., Eklund, R., Residential combustion performance of pelletized hydrolysis residue from lignocellulosic ethanol production. Energy & Fuels 20 (2006) pp.1298-1304. Öhman, M., Boström, D., Nordin, A., Hedman, H., Effect of kaolin and limestone addition on slag formation during combustion of wood fuels. Energy & Fuels 18 (2004) pp.1370-1376. Öhman, M., Nordin, A. The role of kaolin in prevention of bed agglomeration during fluidized bed combustion of biomass fuels. Energy & Fuels 14 (2000a) pp.618-624. Öhman, M., Nordin, A., Skrifvars, B.-J., Backman, R., Hupa, M., Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy & Fuels 14 (2000b) pp.169-178. Olofsson, G., Ye, Z., Bjerle, I., Andersson, A., Bed agglomeration problems in fluidized-bed biomass combustion. Industrial Engineering Chemistry and Research 41 (2002) pp.2888-2894 Park, Y. J. and Heo, J., Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials 91 (2002) pp.83-93. Peng, F., Liang, K., Hu, A., Shao, H., Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash. Fuel 83 (2004) pp.1973-1977. Reddy, G.. V., Mahapatra, S. K. Effect of coal particle size distribution on agglomerate formation in a fluidized bed combustor (FBC). Energy Conversion and Management 40 (1999) pp.447-458. Reichhold, A., Kronberger B., Friedl G., Temporary defluidization in fine powder fluidized beds caused by changing the fluidizing gas. Chemical Engineering Science 61 (2006) pp.2428-2436. Reinik, J., Heinmaa, I., Mikkola, J. P., Kirso, U., Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites. Fuel 86 (2007) pp.669-676. Rio, S., Verwilghen, C., Ramaroson, J., Nzihou, A., Sharrock, P., Heavy metal vaporization and abatement during thermal treatment of modified wastes. Journal of Hazardous Materials 148 (2007) pp.521-528. Rodriguez, A., Hall, M.J., The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles. Waste Management 23 (2003) pp.493-502. Ruokojärvi, P. H., Asikainen, A. H., Tuppurainen, K. A., Ruuskanen, J., Chemical inhibition of PCDD/F formation in incineration processes. Science of the Total Environment 325 (2004) pp.83-94. Sánchez-Sánchez, M. C., Navarro, R. M., Fierro, J. L. G., Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production. International Journal of Hydrogen Energy 32 (2007) pp.1462-1471. Santos, A., Santamaría, J., Menéndez, M., Oxidative coupling of methane in a vibrofluidized bed at low fluidizing velocities. Industrial & Engineering Chemistry Research 34 (1995) pp.1581-1587. Scala, F. and Chirone, R., Characterization and early detection of bed agglomeration during the fluidized bed combustion of olive husk. Energy & Fuels 20 (2006) pp.120-132. Schaafsma, S. H., Vonk, P., Segers, P., Kossen, N. W. F., Description of agglomerate growth. Powder Technology 97 (1998) pp.183-190. Selçuk, N., Gogebakan, Y., Gogebakan, Z., Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite. Journal of Hazardous Materials 137 (2006) pp.1698-1703. Sens, P. F., Wilkinson, J. K., Fluidized bed combustor design, construction and operation, Elsevier applied science, New York, 1988. Seville, J P. K., Silomon-Pflug, H., Knight, P. C. Modelling of sintering in high temperature gas fluidization. Powder Technology 97 (1998) pp.160-169. Shim, Y. S., Kim, Y. K., Kong, S. H., Rhee, S. W., Lee, W. K., The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Management 23 (2003) pp.851-857. Siegell, J. H., High-temperature defluidization. Powder Technology 38 (1984) pp.13-22. Singh, I. B., Chaturvedi, K., Morchhale, R. K., Yegneswaran, A. H., Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay. Journal of Hazardous Materials 141 (2007) pp.215-222. Skrifvars, B. J., Backman, R., Hupa, M., Sfiris, G., Åbyhammar, T., Lyngfelt, A., Ash behaviour in a CFB boiler during combustion of coal, peat or wood. Fuel 77 (1998) pp.65-70. Skrifvars, B. J., Hupa, M., Backman, R., Hiltunen, M., Sintering mechanisms of FBC ashes. Fuel 73 (1994) pp.171-176. Skrifvars, B. J., Hupa, M., Hiltunen, M., Sintering of ash during fluidized bed combustion. Industrial Engineering Chemstry Research 31 (1992) pp.1026-1030. Smith, J. M., Van Ness, N. C. Introduction to chemical engineering thermodynamics. 4th Ed. McGraw-Hill book company, New York, (1987) pp.538-540. Steenari, B. M., Lindqvist, O., High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14 (1998a) pp.67-76. Steenari, B. M., Lindqvist, O., Langer, V., Ash sintering and deposit formation in PFBC. Fuel 77 (1998) pp.407-417. Sutton, D., Kelleher, B., Julian R. H. R., Review of literature on catalysts for biomass gasification. Fuel Processing Technology 73 (2001) pp.155-173. Taiwan Environmental Protection Agency, TEPA (2010) Taiwan area, ROC. Tangsathitkulchai, C., Tangsathitkulchai, M., Effect of bed materials and additives on the sintering of coal ashes relevant to agglomeration in fluidized bed combustion. Fuel Processing Technology 72 (2001) 163-183. Tanikawa, N., Imai, T., Kohei, U., Characteristics of continuous analyzers for nitrous oxide in flue gas from municipal incinerators. Science of the Total Environment 175 (1995) pp.189-198. Tardos, G., Mazzone, D., Pfeffer, R., Destabilization of fluidized beds due to agglomeration part1: theoretical model. Canada Journal of Chemical Engineering 63 (1985) pp.377-383. Tardos, G., Pfeffer, R., Chemical reaction induced agglomeration and defluidization of fluidized beds, Powder Technology 85 (1995) pp.29-35. Thomai, P., Yiannis A. L., Joel C., Yuriy M. D., Paul V., Aromatic hydrocarbon emissions from burning Poly(styrene), Poly(ethylene) and PVC particles at high temperature. Combustion Science and Techology 116-117 (1996) pp.91-128. Toledo, J.M., Corella, J., Corella, L.M., The partitioning of heavy metals in incineration of sludges and waste in a bubbling fluidized bed: 2. Interpretation of results with a conceptual model. Journal of Hazardous Materials 126 (2005) pp.158-168. Tseng, H. H., Wey, M. Y., Chen, J. C., Lu, C. Y., The adsorption of PAHs and heavy metals on modified calcium hydroxides in a dry desulfurization process. Fuel 81 (2002) pp.2407-2416. Ulrich, G. A., A computer program for evaluating equilibrium temperature and compositions of complex chemical system. Tech. Rep. of Cabot Corp (1967) 67-OX-11. Van de Velden, M., Dewil R., Baeyens J., Josson L., Lanssens P., The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). Journal of Hazardous Materials 151 (2008) pp.96-102. Vuthaluru, H. B., Linjewile, T. M., Zhang, D. K., Manzoori, A. R. Investigations into the control of agglomeration and defluidisation during fluidised-bed combustion of low-rank coals. Fuel 78 (1999b), pp.419-425. Vuthaluru, H. B., Remediation of ash problems in pulverised coal-fired boilers. Fuel 78 (1999a) pp.1789-1803. Vuthaluru, H. B., Zhang, D. K. Remediation of ash problems in fluidised-bed combustors. Fuel 80 (2001b) pp.583-598. Vuthaluru, H. B., Zhang, D. K., Effect of coal blending on particle agglomeration and defluidisation during spouted-bed combustion of low-rank coals. Fuel Processing Technology 70 (2001a) pp.41-51. Vuthaluru, H. B., Zhang, D. K., Linjewile, T. M., Behaviour of inorganic constituents and ash characteristics during fluidised-bed combustion of several Australian low-rank coals. Fuel Processing Technology 67 (2000) pp.165-176. Wang, H. C., Hwang, J. F., Chi, K. H., Chang, M. B., Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods. Chemosphere 67 (2007) pp.177-184. Wang, S., Zhu, Z. H., Sonochemical treatment of fly ash for dye removal from wastewater. Journal of Hazardous Materials 126 (2005) pp.91-95. Wank, J. R., George, S. M., Weimer, A. W., Vibro-fluidization of fine boron nitride powder at low pressure. Powder Technology 121 (2001) pp.195-204. Weber, R., Sakurai, T., Hagenmaier, H., Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Applied Catalysis B: Environmental 20 (1999) pp.249-256. Weber, R., Sakurai, T., Low temperature decomposition of PCB by TiO2-based V2O5/WO3 catalyst: evaluation of the relevance of PCDF formation and insights into the first step of oxidative destruction of chlorinated aromatics. Applied Catalysis B, Environmental 34 (2001) pp.113-127. Wei, M. C., Wey, M. Y., Lin, C. L., The competitive adsorption of heavy metals under various incineration conditions. Journal of Chemical Engineering of Japan 36 (2003) pp.243-249. Wei, M.C., Wey, M.Y., Hwang. J.H., Chen, J.C., Stability of heavy metals in bottom ash and fly ash under various incinerating conditions. Journal of Hazardous Materials 57 (1998) pp.145-154. Wey, M. Y., Chao, C. Y., Wei, M. C., Yu, L. J., Liu, Z. S., The influence of heavy metals on partitioning of PAHs during incineration. Journal of Hazardous Materials 77 (2000) pp.77-87. Wey, M. Y., Chao, C. Y., Yu, L. J., The Influence of heavy metal on PAH formation during incineration. Journal of Toxicology Environmental Chemistry 56 (1996) pp.35-45. Wey, M. Y., Chen J. C., Wu H. Y., Yu W. J., Tasi T. H., Formations and controls of HCl and PAHs by different additives during waste incineration. Fuel 85/5-6 (2006b) pp.755-763. Wey, M. Y., Chen, J. C., Wu, H. Y., Yu, W. J., Tasi, T. H., Formations and controls of HCl and PAHs by different additives during waste incineration. Fuel 85 (2006) pp.755-763. Wey, M. Y., Liu, K. Y., Tsai, T. H., Chou, J. T., Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. Journal of Hazardous Materials B137 (2006) pp.981-989. Wey, M. Y., Lu, C. Y., Tseng, H. H., Fu, C. H., The utilization of catalyst-sorbent in scrubbing acid gases from incineration flue gas. Journal of Air and Waste Management Association 52 (2002a) pp.449-458. Wey, M. Y., Ou, W. Y., Liu, Z. S., Tseng, H.H., Yan, W. Y., Chiang, B. C., Pollutants in incineration flue gas. Journal of Hazardous Materials 82 (2001) pp.247-262. Wey, M. Y., Peng, C. Y., Wu, H. Y., Chiang, B. C., Effects of different additives on the performance of semi-dryer during incineration process. Environmental Technology 23 (2002b) pp.675-705. Wey, M. Y., Su, J. L., Yan, M. H., Wei, M. C., The concentration distribution of heavy metal under different incineration conditions. Science of the Total Environment 212 (1998a) pp.183-193. Wey, M. Y., Wu, H. Y., Tseng, H. H., Chen, J. C., Experimental testing of spray dryer for control of incineration emissions. Journal of Environmental Science and Health. Part A A38 (2003a) pp.975-989. Wey, M. Y., Yan, J. T., Wei, M. C., The major species of heavy metal aerosol resulted from water cooling system and spray dryer system. Journal of Air and Waste Management Association. 48 (1998b) pp.1069-1076. Wey, M. Y., Yang, W. Y., Huang, H. C. Chen, J. C., Catalytic oxidation of the organic compounds in the incineration flue gas by a commercial palladium catalyst. Journal of Air and Waste Management Association 52 (2002c) pp.198-207. Wey, M. Y., Yu, L. J., Jou, S. I., Chiang, B. C., Wei, M. C., Adsorption on carbon and zeolite of pollutant from flue gas during incineration. Journal of Environmental Engineering 125 (1999) pp.925-932. Wey, M. Y., Yu, L. J., Jou, S. I., The influence of heavy metals on the formation of organics and HCl during incinerating of PVC-containing waste. Journal of Hazardous Materials 60 (1998c) pp.259-270. Wilewska-Bien, M., Lundberg, M., Steenari, B.M., Theliander, H., Treatment process for MSW combustion fly ash laboratory and pilot plant experiments. Waste Management 27 (2007) pp.1213-1224. Wu, C.Y., Biswas, P., An equilibrium analysis to determine the speciation of metals in an incinerator. Combustion and Flame 93 (1993) pp.31-40. Wu, H. Y., Ting, Y. P., Metal extraction from municipal solid waste (MSW) incinerator fly ash--Chemical leaching and fungal bioleaching. Enzyme and Microbial Technology 38 (2006) pp.839-847. Xiao, R., Jin, B., Zhou, H., Zhong, Z., Zhang, M., Air gasification of polypropylene plastic waste in fluidized bed gasifier. Energy Conversion and Management 48 (2007) pp.778-786. Yan, R., Liang, D. T., Laursen, K., Li, Y., Tsen, L. T., Tay, J. H., Formation of bed agglomeration in a fluidized multi-waste incinerator. Fuel 82 (2003) pp.843-851. Yan, R., Liang, D. T., Tsen, L., Case studies--Problem solving in fluidized bed waste fuel incineration. Energy Conversion and Management 46 (2005) pp.1165-1178. Yao, H., Mkilaha, I. S.N., Naruse, I., Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion. Fuel 83 (2004) pp.1001-1007. Yao, H., Mkilaha, I.S.S., Naruse, I., Sreening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion. Fuel 83 (2004) pp.1001-1007. You, X., Polycyclic aromatic hydrocarbon (PAH) emission from co-firing municipal solid waste (MSW) and coal in a fluidized bed incinerator. Waste Management 28 (2008) pp.1543-1551. Zhang, F. S., Itoh, H., Extraction of metals from municipal solid waste incinerator fly ash by hydrothermal process. Journal of Hazardous Materials 136 (2006) pp.663-670.

The aim of this dissertation is to understand the mechanisms of bed agglomeration and agglomeration inhibition in various fluidized bed applications. The emission behaviors of pollutants (organics and heavy metals) or products (e.g. H2) during defluidization are also in consideration. To achieve these objectives, this dissertation involved three main tasks: (1) investigating the effect of agglomeration/defluidization on the emission behavior of pollutant and product in fluidized bed application such as incineration, gasification and addition of bed additives, fly ash re-treatment, and (2) controlling and preventing the bed agglomeration by using Al- and Ca-based additives. (3) Studying the mechanism of bed agglomeration and the fate of heavy metals by the experimental results and thermodynamic equilibrium simulation. Additionally, the prediction model for agglomeration inhibition with different Al/Na ratios in waste is also investigated.
In fly ash re-treatment, Pb existed mainly in the solid phase (fly ash and bed materials) under different conditions. And then, the ash sintering results Pb exists in coarse particle. However, a low concentration in the TCLP leachate from the bed materials meant that Pb was captured in the sintered bed materials. On the other hand, the comparison of sorbents and Na additive for relative enrichment factor shows that addition of Na causes high concentration of heavy metals exist in coarse particle. Moreover, the adsorption efficiency of metals decreases when the operating temperature increases but is increase when addition of Na in system.
The experimental results of agglomeration inhibition tests indicated that Al inhibited agglomeration in fluidized beds at different Al/Na ratios. The time to reach defluidization decreased as temperature and particle size of bed materials increased, but increased as gas velocity increased. On the other hand, the emission of organics increased with operating time due to the accumulation of eutectics and the formation of agglomerates, reducing the combustion efficiency and quality of the fluidized bed. The concentration of organics decreased sharply because of combustion heat accumulated on the surface of the sand bed at defluidization. However, the concentration of volatized heavy metals emitted shows a dramatically increases after defluidization.
On the other hand, the concentrations of gaseous products emitted with operating time are similar under various operating conditions such as temperature, air factor, and the amount of bed materials during agglomeration process. The concentration and selectivity of H2 and CO increases but CO2 would be reduced at that time. Besides, the results also present that the LHV value of syngas increases during defluidization process.
The results obtained from the thermodynamic equilibrium simulation, heavy metals Pb, Cr, and Cd all reacted with the bed materials to form metallic oxide silicates without additives. According to the simulation results, Al reacts with Na to form high-melting-point compounds inhibiting the formation of agglomerates. Then, the system melting point increases due to addition of Ca which also extends the agglomeration tendency. Besides, each heavy metal has different affinities with other species during the agglomeration inhibition process according to the results of the affinity test. Accordingly, the experimental results and thermodynamic equilibrium simulation results generally agreed well with each other, and the affinity test was established to have a better understanding of the formation of heavy metals in fluidized bed at high temperature.
其他識別: U0005-1708201017310500
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.