Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5758
標題: 聚丙烯酸穩定奈米零價鐵於多孔介質中之傳輸
Transport of polyacrylic acid stabilized nanoscale zero valent iron in porous media
作者: 蔡瑞洲
Tsai, Jui-Chou
關鍵字: Nano-scale zero-valent iron;奈米零價鐵;Polyacrylic acid;Porous media;Transport;Soil organic mater;聚丙烯酸;多孔介質;傳輸;土壤有機質
出版社: 環境工程學系所
引用: 地下水污染管制標準,http://law.epa.gov.tw/zh-tw/laws/414943182.html。 行政院勞委會物質安全資料表,http://ghs.cla.gov.tw/。 佑宣有限公司官網,www.24060009.com。 林財富,吳龍泉,洪志雄,洪旭文,高志明,陳谷汎,陳廷育,許榮欣,葉桂君,楊金鐘,廖毓鈴,鄭秀卿,謝汶興,顏宏愷,「工廠土壤及地下水污染整治技術手冊-石化業」,經濟部工業局,2003。 涂秀娟,「奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響」,碩士論文,中山大學環境工程研究所,2007。 連興隆,張偉賢,「環境奈米技術在地下環境應用之回顧與展望」,環境工程會刊,15(3),22-29,2004。 郭清癸,黃俊傑,牟中原,「金屬奈米粒子的製造」,物理雙月刊,23(6),614-624,2001。 陳家慶,「土壤pH與有機組成分對芘溶出影響之研究」,碩士論文,朝陽科技大學環境工程與管理系研究所,2007。 黃富昌,「土壤結構及化性對有機污染物吸/脫附特性之研究」,博士論文,中央大學環境工程研究所,2004。 楊士衛,「應用於現地注入之奈米鐵懸浮液製備研究」,碩士論文,臺灣大學環境工程研究所,2006。 謝彩虹,「奈米級零價鐵懸浮液之製備及於土壤飽和層中傳輸模擬之研究」,碩士論文,台灣大學環境工程學研究所,2008。 顏伯穎,「應用數值方法模擬水下空氣注入法整治受非水相污染區域之研究」,碩士論文,成功大學資源工程研究所,2002。 Borden, R. C., and Rodriguez, B. X. (2006). “Evaluation of Slow Release Substrates for Anaerobic Bioremediation,” Bioremediation Journal, 10(1–2), 59-69. Covelo, E. F., Vega, F. A., and Andrade, M. L. (2008). “Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction,” Journal of Hazardous Materials, 159(2-3), 342-347. Elliott, D. W., and Zhang, W. X. (2001). “Field assessment of nanoscale bimetallic particles for groundwater treatment,” Environmental Science and Technology, 35(24), 4922-5926. Fountain, J. C., Starr, R. C., Middleton, T., Beikirch, M., Taylor, C., and Hodge, D. (1996). “A Controlled Field Test of Surfactant-Enhanced Aquifer Remediation,” Ground Water, 34(5), 910-916. Gu, B., Schmitt, J., Chen, Z., Liang, L., and McCarthy, J. H. (1994). “Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models,” Environmental Science and Technology, 28(1), 38-46. He, F., and Zhao, D. (2008). “Hydrodechlorination of trichloroethene using stabilized Fe-Pd nanoparticles: Reaction mechanism and effects of stabilizers, catalysts and reaction conditions,” Applied Catalysis B: Environmental, 84(3-4), 533-540. He, F., Zhang, M., Qian, T., and Zhao, D. (2009). “Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling,” Journal of Colloid and Interface Science, 334(1), 96-102. Johnson, E. L., Johnson, G. O., Nurmi, J. T., and Tratnyek, P. G. (2009). “Natural Organic Matter Enhanced Mobility of Nano Zerovalent Iron,” Environmental Science and Technology, 43(14), 5455-5460. Kanel, S. R., and Choi, H. (2007). “Transport characteristics of surface-modified nanoscale zero-valent iron in porous media,” Water Science & Technology, 55(1-2), 157-162. Kanel, S. R., Goswami, R. R., Clement , T. P., Barnett, M. O., and Zhao D. (2008). “Two Dimensional Transport Characteristics of Surface Stabilized Zero-valent Iron Nanoparticles in Porous Media,” Environmental Engineering Science, 42(3), 896-900. Kanel, S. R., Nepal, D., Manning, B., and Choi, H. (2007). “Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation,” Journal of Nanoparticle Research, 9(5), 725-735. Kueper, B. H., Wealthall, G. P., Smith, J. W. N., Leharne, S. A., and Lerner, D. N. (2003). “An illustrated handbook of DNAPL transport and fate in the subsurface,” Environment Agency R&D Publication 133, UK. Lecoanet, H. F., Bottero, J. Y., and Wiesner, M. R. (2004). “Laboratory Assessment of the Mobility of Nanomaterials in Porous Media,” Environmental Science and Technology, 38(19), 5164-5169. Mackay, D. M., Roberts, P. V., and Cherry, J.A. (1985). “Transport of organic contaminants in groundwater: distribution and fate of chemicals in sand gravel aquifers,” Environmental Science and Technology, 19(5), 384-392. Matheson, L. J. and Tratnyek, P. G. (1994). “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,” Environmental Science and Technology, 28(12), 2045-2053. Mayer, A. B. R. (2001). “ Colloidal metal nanoparticles dispersed in amphiphilic polymers,” Polymers for Advanced Technologies, 12(1-2), 96-106. Nelson, D. W., and Sommers, L. E. (1982). “Total carbon, organic carbon, and organic matter,” Soil Science Society of America Inc., USA. Pelley, A. J., and Tufenkji, N. (2008). “Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media,” Journal of Colloid and Interface Science, 321(1), 74-83. Phenrat, T., Kim, H. J., Fagerlund, F., Illangasekare, T., Tilton, R. D., and Lowry, G. V. (2009). “Particle Size Distribution, Concentration, and Magnetic Attraction Affect Transport of Polymer-Modified Fe0 Nanoparticles in Sand Columns,” Environmental Engineering Science, 43(13), 5079-5085. Phenrat, T., Saleh, N., Sirk, K., Kim, H. J., Tilton, R. D., and Lowry, G. V. (2008). “Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation,” Journal of Nanoparticle Research, 10(5), 795-814. Prommer, H., Aziz, L. H., Bolaño, N., Taubald, H., and Schüth C. (2008). “Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron,” Journal of Contaminant Hydrology, 97(1-2), 13-26. Saleh, N. Sirk, N., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2007). “Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media,” Environmental Engineering Science, 24(1), 45-57. Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2008). “Ionic Strength and Composition Affect the Mobility of Surface-Modified Fe0 Nanoparticles in Water-Saturated Sand Columns,” Environmental Science and Technology, 42(9), 3349-3355. Schreier, C. G., and Reinhard, M. (1995). “Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water,” Chemosphere, 31(6), 3475-3487. Schrick, B., Hydutsky, B. W., Blough, J. L., and Mallouk, T. E. (2004) “Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater,” Chem. Mater., 16(11), 2187–2193. Shiratori, K., Yamashita, Y., Adachi, Y. (2007). “Deposition and subsequent release of Na-kaolinite particles by adjusting pH in the column packed with Toyoura sand,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306(1-3), 137-141. Sun, Y. P., Li, X. Q., Zhang, W. X., and Wang, H. P. (2007). “A method for the preparation of stable dispersion of zero-valent iron nanoparticles,“ Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1-3), 60-66. Tiraferri, A., and Sethi, R. (2009). “Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum,” Journal of Nanoparticle Research, 11(3), 635-645. Vulava, V. M., and Seaman, J. C. (2000). “Mobilization of lead from highly weathered porous material by extracting agents,” Environmental Science and Technology, 34(22), 4828-4834. Xiong, Z., Zhao, D. Y. and Pan, G. (2007). “Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles,” Water Research, 41(15), 3497-3505. Yao, K. M., Habibian, M. T., and O’Melia, C. R., (1971). “Water and waste water filtration. Concepts and applications,” Environ. Sci. Technol., 5(11), 1105–1112. Zhang, W. X. (2003). “Nanoscale iron particles for environmental remediation: An overview,” Journal of Nanoparticle Research, 5(3-4), 323-332.
摘要: 
使用奈米零價鐵金屬(nanoscale zero-valent iron, ZVI)作為透水性化學反應牆(chemical reactive barriers, CRB)之材料應用於整治地下水污染已有諸多文獻刊載,然而其本身容易因凡得瓦爾力(Van der Waals attractive forces)及靜電吸引力(electrostatic attraction)等作用力產生凝聚造成地下土層阻塞(plugging)、傳輸性(mobility)降低,使得它僅適用於較淺的地下水含水層的復育。
本研究主要目的為利用高分子聚合物聚丙烯酸(poly acrylic acid, PAA)作為分散劑,對自行合成的NZVI進行表面修飾,製備成NZVI懸浮液,以擴大它的污染復育之適用範圍。並探討NZVI懸浮液於地下水環境因子影響下的傳輸狀況,以期未來應用於現地(In situ)處理時,能更精確的了解NZVI的傳輸效果。
管柱試驗中除了比較不同PAA改質比例之傳輸情形外,孔隙流速、離子濃度以及土壤有機質等也是需探討的變數。經實驗顯示,經過0.175%PAA改質之NZVI懸浮液在孔隙流速6.24m/day以上時有著不錯的傳輸效率;於離子強度10mM環境下傳輸並無受到顯著的干擾;而土壤有機質方面,同上述改質之零價鐵於土壤有機質濃度10%環境下傳輸時,回收率僅30.98%,顯示零價鐵於該環境下傳輸較不利。
URI: http://hdl.handle.net/11455/5758
其他識別: U0005-1908201020564900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.