Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5762
標題: UV活化過硫酸鹽氧化酚之可行性探討
Feasibility Study of UV Activated Persulfate Oxidation of Phenol
作者: 陳俊華
Chen, Chun-Hua
關鍵字: advanced oxidation processes;高級氧化;phenol;persulfate;UV;activation;酚;過硫酸鹽;活化;紫外光
出版社: 環境工程學系所
引用: Andreozzi R., Caprio V., Insola A., and Marotta R., The oxidation of metol (N-methyl-P-aminophenol) in aqueous solution by UV/H2O2 photolysis. Water Research, Vol. 34, pp. 463-472, 2000. Alexander A., Eli K., Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. The Journal of Chemical Thermodynamics, Vol. 33, pp. 61-69, 2001. Anipsitakis G. P., Dionysiou D. D., Radical generation by the interaction of transition metals with common oxidants. Environmental Science and Technology, Vol. 38, pp. 3705-3712, 2004. Behrman E. J., Dean D. H., Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (Persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B, Vol. 723, pp. 325-326, 1999. Buxton G. V., Malone T. N., Salmon G. A., Reaction of SO4- with Fe2+,Mn2+ and Cu2+ in aqueous solution. Journal of the chemical Society, Faraday Trans. Vol. 93, pp. 2893-287, 1997. Chen R., Pignatello J. J., Role of quinone intermediates as electron shuttles in fenton and photoassisted fenton oxidations of aromatic compounds, Environmental Science and Technology, Vol. 31, pp. 2399-2406, 1997. Caster S. R., Stefan M. I., Bolton J. R., and Safarzadeh-Amiri A., UV/H2O2 treatmeat of Methyl tert-Butyl ether in contaminated waters. Environmental Science and Technology, Vol. 34, pp. 659-662, 2000. Criquet J., and Leitner N. K. V., Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere, Vol. 77, pp. 194-200, 2009. Dogliotti L., Hayon E., Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide redical anions. The Journal of Physical Chemistry, Vol. 71(8), pp. 2511-2516, 1967. Federico M., Fernando V., Natalia V., Changes in solution color during phenol oxidation by Fenton reagent. Environmental Science and Technology, Vol. 40, pp. 5538-5543, 2006. FMC, Persulfate Technical Information, 2001. http://www.fmcchemicals.com/LinkClick.aspx?fileticket=y%2F0DZcxPM4w%3D&tabid=1468&mid=2563. House D. A., Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews, Vol. 62, pp. 185-203, 1962. Huyer E. S., Free-Radical chain reactions. John Wiley & Sons Inc, New York. 1970. Hayon E., Treinin A., Wilf J., Electronic Spectra, Photochemistry and autoxidation. mechanism of the Sulfite-Bisulfite-Pyrosulfite systems. The Journal of the American Chemical Society, Vol. 94, pp. 47-57, 1972. Huang K. C., Couttenye R. A., Hoag G. E., Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether(MTBE). Chemosphere, Vol. 49, pp. 413-420, 2002. Huang Y.-F., Huang Y.-H., Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8 /H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials, Vol. 162, pp. 1211-1216, 2009. Kavitha V., Palanivelu K., The role of ferrous ion in Fenton and photo- Fenton processes for the degradation of phenol, Chemosphere., Vol. 55, pp. 1235-1243, 2004. Kang S. F., Liao C. H., Hung H. P., Peroxidation treatment of dye manufacturing wastewater in the presence of ultraviolet light and ferrous ions, Journal of Hazardous Materials, Vol. 65, pp. 317-333, 1999. Kolthoff I. M., Stenger V. A., Volumetric analysis. In:Titration Methods:Acid-Base, Precipitation, and Complex Reactions. Interscience Publishers, New York, USA. 1947. Liao C.-H., Gural M. D., Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environmental Science and Technology, Vol. 29, pp. 3007-3014, 1995. Liang C. J., Bruell C. J., Marley M. C., Sperry K.L., Thermally activated persulfate oxidation of trichloroethylene(TCE) and 1,1,1-trichlor- oethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination, Vol. 12(2), pp. 207-228, 2003. Liang C. J., Wang Z.-S., Bruell C. J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, Vol. 66, pp. 106-113, 2007. Liang C. J., Su H.-W., Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research, Vol. 48, pp. 5558-5562, 2009. Lindsey M. E., Tarr M. A., Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter. Environmental Science and Technology, Vol. 34, pp. 444-449, 2000a. Lindsey M. E., Tarr M. A., Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere, Vol. 41, pp. 409-417, 2000b. Montaser Y. G.., Georg H., Roland M., Roland H., Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process:a comparative study. Waste Management, Vol. 21, pp. 41-47, 2001. Neamtu M., Siminiceanu I., and Kettrup A., Kinetics of nitromusk compounds degradation in water by ultraviolet radiation and hydrogen peroxide. Chemosphere, Vol. 40, pp. 1407-1410, 2000. Pignatello J. J., Dark and photoassisted Fe3+-catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, Vol. 26, pp. 944-951, 1992. Sprah G., Harms S., Influence of some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction, Chemosphere., Vol. 30, pp. 9-20, 1995. Seigrist R. L., Urynowicz M. A., West O. R., Crimi M. L., Lowe K. S., Principles and practices of in-situ chemical oxidation using permanganate. Battelle Press, Ohio, USA, 2001. Travina O. A., Kozlov Y. N., Purmal A. P., Rodko I. Y., Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russian Journal of Physical Chemistry. Vol. 73, pp. 1215-1219, 1999. Villacañas F., Pereira M. F. R., órfão J. J. M., Figueiredo J. L., Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science. Vol. 293, pp. 128-136, 2006. Walker J. D., Effects of chemicals on microorganisms. J. WPCF. Vol. 60, pp. 1106-1121, 1988. Ziajka J., Pasiuk-Bronikowska W., Rate constants for atmospheric trace organics scavenging SO4-˙in the Fe-catalysed autoxidation of S(Ⅳ). Atmospheric Environment. Vol. 39, pp. 1431-1438, 2005. 阮國棟 ,廢水中各種酚類去除之理論與實務,工業污染防治第三卷第三期,P88-103,1984。 劉明哲、盧明俊、陳重南,以高級氧化程序處理高爆藥-海掃更,工業污染防治第七十八期,P1-26,2001。 蔡政紋,以好氧批次式活性污泥法處理酚廢水之可行性研究,東海大學化學工程研究所碩士論文,民國89年。 環保署毒理資料庫,編號:HSN-113,http://flora2.epa.gov.tw/prog/database/ 7328.htm。 勞工安全衛生研究所,物質安全資料表,http://www.iosh.gov.tw/Msds.aspx? D= 98。 蔡志宏,Photo-Fenton法處理反應性偶氮染料Black B與酚之研究,國立成功大學化學工程研究所碩士論文,民國94年7月。 鄭成輝,利用高級氧化程序(AOP)處理半導體工業放流水COD之研究,淡江大學水資源及環境工程學系碩士論文,民國94年6月。 呂仁明、顧洋、李崑池,以紫外線/二氧化鈦程序處理2-氯酚溶液反應行為之研究,第十八屆廢水處理技術研討會論文集,1993年12月。 蘇宏毅、洪錫勳,UV/ H2O2技術在化工業上之應用,工業污染防治第五十六期,1995年10月。 曾迪華、莊連春、郭家倫、楊志堅,UV/ H2O2氧化程序術於水處理之應用,工業污染防治第五十六期,1995年10月。 胡漢生,環境醫學,科技圖書股份有限公司,台北,1989。 鄭燁程,輻射激發光觸媒降解水中酚之研究,國立清華大學原子科學系碩士論文,民國94年6月。 傅啟峰,電催化芬頓法處理皮革廢水,國立台灣大學環境工程研究所碩士論文,民國90年6月。 林財富、鄭仲愷,現地化學氧化技術之法展與案例分析,第八屆土壤及地下水污染整治研討會論文集,2003年8月。 連雅棉,紫外光活化過硫酸鹽氧化甲基第三丁基醚之研究,國立成功大學環境工程研究所碩士論文,民國98年6月。
摘要: 
過硫酸鹽(persulfate)經紫外光(UV)活化可產生高反應性的硫酸根自由基(SO4-․),並且於高pH條件下可進行自由基轉換而生成氫氧根自由基(OH․),因此UV活化過硫酸鹽反應具有氧化有機污染物之能力。本研究探討254 nm波長UV活化過硫酸鹽氧化降解酚之可行性,並針對不同pH條件和不同氧化劑與酚莫爾濃度比例系統下,此程序對酚降解之影響。實驗結果得知,未活化的過硫酸鹽對酚反應速率很慢,無法在短時間內(1小時)快速氧化酚,然而UV可活化過硫酸鹽產生自由基,並有效的降解酚,當酚初始濃度為0.5 mM,反應時間1小時後酚的降解率可達99 %以上,礦化率達63 %,此時約有3 %過硫酸鹽被消耗,若將酚初始濃度提高為5 mM,反應時間1小時後酚的降解率僅約13 %,礦化率約4 %,此時約有3 %過硫酸鹽被消耗。若於不同pH環境下,實驗結果證實pH不同並不會明顯影響酚之降解,然而酚氧化降解效率主要受酚之初始濃度及氧化劑濃度所影響。

UV activated persulfate can produce highly reactive sulfate free radicals (SO4-․). At alkaline condition, SO4-․can react with hydroxyl ions and undergo radical interconversion to form hydroxyl radicals (OH․). This study investigated feasibility of 254 nm UV activated persulfate oxidation of phenol and focused on effects of pH and persulfate/phenol molar ratios on the degradation of phenol. The results of this study show that un-activated persulfate was not able to effectively degrade phenol within an hour. However, UV can efficiently activate persulfate to produce SO4-․ in degrading phenol. When initial phenol concentration was 0.5 mM, 99% of phenol degradation and 63% of mineralization were achieved within an hour of oxidation reaction while 3% of persulfate was decomposed. Moreover, the results obtained from the oxidation reaction under different pHs exhibited effects of pH conditions on phenol degradations were minor. However, initial phenol and persulfate concentrations significantly influenced the phenol degradation.
URI: http://hdl.handle.net/11455/5762
其他識別: U0005-2108201001305900
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.