Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5763
標題: 探討海研船渦流協變性系統於不同架設位置下之可行性研究
Evaluation of eddy covariance system set up in different locations over R/V Ocean Researcher
作者: 陳勇達
Chen, Yung-Ta
關鍵字: ocean environment;海洋環境;Ship interference;Eddy Covariance system;Ship motion correction;Fourier spectrum analysis;CO2 fluxes;Underway pCO2 system;WPL correction;船體干擾;渦流協變性系統;海洋校正公式;傅立葉頻譜分析;CO2通量;二氧化碳分壓系統;WPL項校正
出版社: 環境工程學系所
引用: 英文部分 Aubinet, M.A. Grelle, A. Ibrom, Ü. Rannik, J. Moncrieff, T. Foken, A.S. Kowalski, P.H. Martin, P. Berbigier, Ch. Bernhofer, R. Clement, J. Elbers, A. Granier, T. Grünwald, K. Morgenstern, K. Pilegaard, C. Rebmann, W. Snijders, R. Valentini, and T. Vesala., 2000: Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology. Advances in Ecological Research, 30, 114-175. Baldocchi, D., E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, Ch. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K.T. Paw U, K. Pilegaard, H.P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsyn., 2001: FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415-2434. Bian Lingen, Gao Zhiqiu, LuLonghua, Zhang Yabin, C.Roger, and X.D.Zhang., 2003: Observational estimation of heat budgets on drifting ice and open water over the Arctic Ocean. Science In China, 46, 580-591. Brut, A., D. Legain, P. Durand, and P. Laville., 1998: A Relaxed Eddy Accumulator for Surface Flux Measurements on Ground-Based Platforms and Aboard Research Vessels. American Meteorological Society, 21, 411-427. Brutsaert, W.H., 1982: Evaporation into the Atmosphere. D. Reidel Publish Company, Holland. E.W. Schulz, B.G. Sanderson, and E.F. Bradley, 2005: Motion correction for shipborne turbulence sensors. American Meteorological Society, 22, 55-69. Fairall C. W. and A.B.White., 1996: Integrated Shipboard Measurements of the Marine Boundary Layer. Journal of Atomspheric and Oceanic Technology. 14, 338-359. Francois Anctil, Mark A. Donelan, William M. Drennan, and Hans C. Graber, 1994: Eddy-correlation measurements of air-sea fluxes from a discus buoy. Journal of Atmospheric and Oceanic Technology, 11, 1144-1150. Fujitani T., 1981: Direct measurements of turbulent fluxes over the sea during AMTEX. Meteorology and Geophysics, 32, 119-134. Fujitani T., 1985: Method of turbulent flux measurement on a ship by using a stable platform system. Meteorology and Geophysics, 36, 157-170. Fumiyoshi Kondo, and Osamu Tsukamoto, 2007: Air-sea CO2 flux by eddy covariance technique in the equatorial Indian Ocean. Journal of Oceanography, 63, 449-456. Gao Zhiqiu, Bian Lingen, and Xiuji Zhou, 2003: Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. Geophysical Research, 108, NO. D13, 4387, doi:10.1029/2002JD002779. Gerd Wendler, Brian Hartmann, Chris Wyatt, Martha Shulski, and Henry Stone, 2005: Midsummer Energy Balance for the Southern Seas. Boundary-Layer Meteorology, 117, 131-148. G.G. Burba, S.B.Verma, and J. Kim, 1998: Energy Fluxes of an open water area in a mid-latitude prairie wetland. Boundary_Layer Meeorology, 91, 495-504. J.B. Edson, A.A. Hinton, K.E. Prada, J.E. Hare, and C.W. Fairall, 1998: Direct Covariance Flux from Mobile Platform at Sea. Atmospheric and Oceanic Technology, 15, 547-562. Kaimal, J.C., and J.E. Gaynor, 1991: Another Look at Sonic Thermometry. Boundary-Layer Meteorol, 56, 401-410. Lee Hyun-Chul, and Yoon Jong-Hwan, 1999: Surface Heat Flux in the East China Sea and the Yellow Sea. Journal of Physical Oceanography, 29, 401-417. Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 91, 39-49. Li-7500 CO2/H2O Analyzer Introduction Manual., 2004: Environmental Version. Li-COR Inc. McGillis W. R., and Edson J. B.. 2001: Direct covariance air-sea CO2 fluxes. Journall of Geophysical Research, 106, 729-745. McGillis W. R., and Edson J. B., 2004: Air-sea CO2 exchange in the equatorial Pacific. Journall of Geophysical Research, 109, C08S02,doi:10.1029/2003JC002256. McMillen, R.T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology, 43, 231-245. Meek, D.W., and J.H. Prueger, 1998: Solutions for three regression problems commonly found in meteorological data analysis. American Meteorological Society, 141-145. Msssman, W.J., and X. Lee., 2002: Eddy covariance flux correction and uncertainties in long-term stydies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121-144. Sachiho Sugimoto, Futoshi Nakamura, and Akiko Ito, 1997: Heat Budget and Statistical Analysis of the relationship between Stream Temperature and Riparian Forest in the Toikanbetsu River Basin, Northern Japan. J. For. Res, 2, 103-107 Tsai J-L, B-J Tsuang., 2005: Aerodynamic roughness over an urban area and over two farmlands in a populated area as determined by wind profiles and surface energy flux measurements. Agricultural and Forest Meteorology, 132, 154-170. Tsuang, B-J, J-L Tsai, M-D Lin, and C-L Chen., 2003: Determining aerodynamic roughness using tethersonde and heat flux measurements in an urban area over a complex terrain. Atmospheric Environment, 37, 1993-2003. Wayne R. Rouse, Devon Worth, and Claire Oswald., 2003: Energy Budget Processes of a Smalll Northern Lake. Journal of Hydrometeorology, 4, 694-701 Webb, E.K., G.I. Pearman, and R. Leuning., 1980: Correction of flux measurements for density effects due to heat and water vapor transfer, Quart. J. R. Met. Soc., 106, 67-90. Wilczak, J.M., S.P. Oncley, and S.A. Stage., 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 99, 127-150 Wilson, K.B., A. Goldstein, E. Falge, M. Aubinet, D. Baldocchi, P. Berbigier, C. Bernhofer, R. Ceulemans, H. Dolman, C. Field, A. Grelle, A. Ibrom, B.E. Law, A. Kowalski, T. Meyers, J. Moncrieff, R. Monson, W. Oechel, J. Tenhunen, R. Valentini, and S. Verma, 2002: Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243. Zhang, S., C. Qiu, and W. Zhang., 2004: Estimating heat fluxes by merging profile formulae and the energy budget with a variational technique. Advances in Atmospheric Science, 21, 627-636. Feely, R. A. et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362-367. Sabine, C. L. et al. (2004). The oceanic sink for anthropogenic CO2. Science 305: 367-371. 中文部分 高昇敬,2000:「矩形建築物高寬比對其周遭風場影響之研究」,碩士論文,國立中央大學土木工程研究所,桃園。 葉鈞喬,2005:「風場時空變化對全球大氣-海洋二氧化碳通量計算影響之研究」,碩士論文,國立中央大學水文科學研究所,桃園。 謝祥雲,2006:「利用陀螺儀於非靜止平台上校正通量之方法」,碩士論文,國立中興大學環境工程研究所,台中。 陳元隆,2007:「渦流協變性系統應用在海洋環境觀測之困難度探討與解決方法」,碩士論文,國立中興大學環境工程研究所,台中。 吳庭宇,2008:「南海海域二氧化碳及能量通量觀測之研究」,碩士論文,國立中興大學環境工程研究所,台中。 黃婷萱,2009:「台灣海峽及南海北部二氧化碳變化」,碩士論文,國立中山大學海洋地質及化學研究所,高雄。
摘要: 
以航行中的研究船而言,於海洋環境中應用渦流協變性系統進行大氣和海面各項通量觀測時,需考慮到四種干擾因素,包括:(1)海水波浪所造成的受壓項(wave stress)及載體所引起之晃動及搖動變形量(flow distortion)造成之三維風向誤差;(2)研究船排放煙流,致使CO2濃度受到煙囪飆高的情況;(3)不同架設位置,因船體桿子影響致感受到不一致性的風速風向,風場氣動相渦流干擾,對所計算之通量量測結果有所誤差存在;(4)此外還要考慮開放式儀器會受到環境因素的干擾,如海水、海鹽對於紅外線氣體分析儀所造成的偵測誤差,也都會使資料的可用率及正確率下降。本研究中分析三個海洋上的通量及氣象觀測實驗,分別在2009年9月、2010年3月與2010年4月於西太平洋、南海及台灣海峽進行,探討海研船渦流協變性系統於船頭不同架設高度及不同架設位置之觀測差異情況,以及找尋海研船進行通量之觀測所遇到各種干擾項,進而找出干擾較少適合於海研船上架設觀測位置點。
於海洋環境下,氣象觀測結果顯示,中午海面反照率(Albedo)範圍值約為0.04 ~ 0.08,氣溫、水溫有明顯的日夜周期變化,受太陽輻射之貢獻具正相關的關係,相對濕度為70 ~ 100 % 之間,受太陽輻射之貢獻具負相關的關係。在渦流協變性系統於同一位置不同高度(25m、17m)及不同位置(左右、前後舷)的架設下,所感受到之水平風向兩者間差異不大,水平風速有些微的差異變化。此外,垂直風速則因各風源來向角度有明顯的差異變化,頂風及尾風對船體的關係占很大影響因素之一。
在經過海面平台校正及WPL校正後,所求得之通量在海研船不同架設位置及高度下,同一位置船頭處不同高度(25m、17m)的架設,17m處有較旺盛的CO2通量吸收現象,且於不同位置(左右舷)架設時,所求得之通量,有不規則趨勢性變化產生。在二氧化碳分壓系統與渦流協變性系統量測結果比較下,CO2通量觀測值有十至百倍之誤差結果。在傅立葉頻譜分析上,垂直風速(w)、二氧化碳濃度(CO2)與位溫(Ts)因不同架設位置有不同變化趨勢結果及日夜變化現象,且船頭處感受渦流訊號較明顯,陀螺儀(pitch、yaw、roll)三軸變化上,搖擺情況不一致,有多處明顯的強度訊號產生。

On the research ship, air-sea fluxes were observed by the eddy covariance system (ECS) over the ocean. Four problems in the experiments should be considered:(1) ocean wave and the movement of the ship would caused the error of the measured wind velocity;(2) high measured CO2 concentrations would be emitted from the stack on the ship rather than from the ocean;(3) the ECS set up at different positions would affect the measurement of wind fields and cause the error of flux results;(4) the open path analyzer would be interfered with environmental factors, such as rain, sea spray and sea salt, and the usability and accuracy of the data would be reduced. In this study, three cruises of flux and meteorological observations were carried out in western Pacific Ocean (September 2009), South China Sea (March 2010) and Taiwan Straits (April 2010). The fluxes observed from ECS set up at different positions and different elevations were discussed to find out the possible interferences while doing flux measurements. Finally, the most suitable position to set up the ECS was recommended in this study.
The results show that the albedo over the sea is 0.04-0.08 at noon. Being positively correlated with solar radiation, the diurnal variations of air temperatures and water temperatures are obvious. The relative humidity is negatively correlated with solar radiation, and is about 70%-100% over the sea. In every cruise, the ECS were set up at two different positions at the same time to discuss the influence of the ship on wind fields. In three cruises, the ECS were set up at 25 m and 17 m above sea level, at left and right decks, at stem and stern, respectively. The results show that the horizontal wind directions at two ECS positions are similar, and the wind velocities are slightly different. However, the vertical wind velocity (w) is obviously affected by the hull and by the situation where the ship is heading wind or following wind.After the ship motion correction and the WPL correction, the CO2 flux sinks more obviously at 17 m above sea level than at 25 m above sea level. The CO2 flux measured by the underway pCO2 system and ECS were quite different, and were even up to 10 to 100 times the difference. In fourier spectral analysis, vertical wind velocities, CO2 concentrations and potential temperatures measured at different positions show different results and different diurnal trends. The signals of eddy vortex at stem were strongest. There are many obvious signals for the gyroscope; however, the signals are inconsistent in three axes (pitch, yaw and roll).
URI: http://hdl.handle.net/11455/5763
其他識別: U0005-2207201014153600
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.