Please use this identifier to cite or link to this item:
標題: 結合厭氧菌、紫色不含硫光合細菌和藍綠細菌產氫之研究
Hydrogen production with combination system of anaerobic bacteria, photosynthetic bacteria and cyanobacteria
作者: 蔡明諺
Tsai, Ming-Yen
關鍵字: anaerobic bacteria;厭氧菌;photosynthetic bacteria;cyanobacteria;biohydrogen;紫色不含硫光合細菌;藍綠細菌;生物產氫
出版社: 環境工程學系所
引用: 王炳南,2005,厭氧醱酵產氫與光合產氫之反應槽串聯可行性評估。國立中興大學碩士論文。 白明德,1999,厭氧生物產氫機制與程序操作策略之研究。國立成功大學碩士論文。 呂碧芬,2009,紫色不含硫光合細菌與藍綠細菌共培養產氫可行性之評估。國立中興大學碩士論文。 林建勝,2007,以生質能源程序探討廚餘厭氧氫發酵之研究。國立成功大學碩士論文。 林鈺傑,2008,紫色不含硫光合菌結合不同生物系統產生氫氣之研究。國立中興大學碩士論文。 林瑤玓,2002,紫色不含硫光合作用細菌於連續流產氫之研究。國立中興大學碩士論文。 洪國展,2004,光合產氫之程序組合及應用。國立中興大學碩士論文。 范欣惠,2006,藍綠菌最佳產氫生理條件及其反應器操作之研究。國立中興大學碩士論文。 郁揆民,2003,紫色不含硫光合作用細菌產氫限制因子之研究。國立中興大學碩士論文。 涂良君,1999,產氫光合作用細菌之分離與篩選。國立中興大學碩士論文。 張時雨,2004,碳源對藍綠菌Anabaena CH1、CH2、CH3光合產氫能力影響之研究。國立中興大學碩士論文。 郭世強,2006,廚餘厭氧醱酵產氫程序之功能評估。國立成功大學碩士論文。 陳伯中,1986,藻類與能源。藻類之研究與應用研討會論文集,第67-76頁。 蔡坤蒼,2005,臺北市廚餘再利用回收再利用方案評估。國立台灣大學環境工程學研究所碩士論文。 劉軒孜,2009,探討紫色不含硫光合細菌Rhodopseudomonas palustris WP3-5產氫及PHB累積之競爭關係。國立中興大學碩士論文。 蕭景庭,2000,產氫光合作用細菌之生理特性研究。國立中興大學碩士論文。 顧洋,2009,「後全球暖化」時代因應地球暖化調適策略之發展。能源報導。 行政院環保署網站 經濟部能源局網站 經濟部能源局,2007,能源科技研究發展白皮書,第三篇-我國重點能源科技研發動向及策略,第四節-生質能。 Adams, M.W.W., Mortenson, L. E., and Chen, J. S., 1980. Hydrogenase. Biochimica et Biophysica Acta, 594,105-176. Akkerman, I., Janssen, M., Rocha, J. M. S., Reith, J. H., and Wijffels, R. H., 2002. Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Energy, 27, 1195-1208. Akkerman, I., Janssen, M., Rocha, J. M. S., Reith, J. H., and Wijffels, R. H., 2003. Photobiological hydrogen production: photochemical efficiency and bioreactor design, in Bio-methane and Bio-hydrogen. Dutch Biological Hydrogen Foundation, 124-145. Allen, M. B., and Arnon, D. I., 1955. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrical LEMM. Plant Physiol, 30, 366-372. Anastasios, M., and Matthew, R. M., 2006. Integrated biological hydrogen production. International Journal of Hydrogen Energy, 31, 1563-1573. Antal, T. K., and Lindblad, P., 2005. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology, 98, 114-120. Argun, H., Fikret, K., and Ilgi, K. K., 2008.Light fermentation of dark fermentation effluent for bio-hydrogen production by different Rhodobacter species at different initial volatile fatty acid(VFA) concentrations. Interational journal of hydrogen energy, 33, 7405-7412. Axellson, R., Oxelfelt, F., and Lindblad, P., 1999. Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiology Letters, 190, 77-81. Bai, M. D., Cheng, S. S., and Tseng, I. C., 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. The IWA Asia-Pacific Regional Conference (WaterQual 2001), Fukuoka, Japan Baronofsky, J. J., Schreurs, W. J. A., and Kashket, E.V., 1984. Uncoupling by acetic acid limit growth of and acetogenesis by Clostridium thermaceticum, Applied and Environmental Microbiology, 48, 1134-1139. Barreto, L., Makihira, A., and Riahi, K., 2003. The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28, 267-284. Basar, U., Inci, E., Meral, Y., Ufuk, G., and Lemi, T., 2007. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. International Journal of Hydrogen Energy, 32, 4670-4677. Beneman, J., 1996. Hydrogen biotechnology-progress and prospect. Nature Biotechnol, 14, 1110. Borodin, V. B., Tsygankov, A. A., Rao, K. K., and Hall, D. O., 2000. Hydrogen production by Anabaena variabilis PK84 under simulated outdoor conditions. Biotechnology and bioengineering, 69, 478-485. BP Statistical Reviewof World Energy June 2009 Brosseau, J. D., and Zajic, J. E., 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal of Chemical Technology and Biotechnology, 32, 496-502. Carolyn, C. E., and Catherine, E. G. P., 2001. International energy agency agreement on the production and utilization of hydrogen. Proceedings of the 2001 DOE Hydrogen Program Review, Nrel/ CP-570-30535. Chen, J. S., and Mortenson, L. E., 1974. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochimica et Biophysica Acta, 371, 283-298. Cheng, S. S., Tseng, I. C., and Bai, M. D., 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, Taipei, Taiwan, 759-764. Claassen, P. A. M., and Lier, J. B. V., 1999. Utilisation of biomass for the supply of energy carriers. Apply microbial biothechnol, 52, 741-755. Daday, A., Rosalea, A. P., and Geoffrey, D. S., 1997.Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrical. Applied and environmental microbiology, 34(5), 478-483. Das, D., and Veziroglu, T. N., 2001. Hydrogen production by biology processes:a survey of literature. International Journal of Hydrogen Energy, 26, 13-28. Das, D., 2001. Hydrogen production by biological processes: a survey of literature. International journal of hydrogen energy, 26, 13-28. Das, D., 2009. Advances in biohydrogen production processes : An approach towards commercialization. International journal of hydrogen energy, 34, 7349-7357. Datta, M., Nikki, G., and Vishal, S., 2000. Review of Cyanobacterial hydrogen production. World Jounal of Microbiology and Biotechology, 16, 757-767. Davis, G., 2002. Renewable hydrogen fuel production by microalgal photosynthesis. Renewable energy technologies. Debabrata D., and Veziroğlu, T. N., 2001. Hydrogen production by biological process:a survey of literature. International Journal of Hydrogen Energy, 26, 13-28. Dutta, D. D. D., Surabhi, C., and Sanjoy, K. B., 2005. Hydrogen production by Cyanobacteria – review. Microbial Cell Factories, 4, 36. Ernst, A., Kerfin, W., Spiller, H., and Boger, P., 1979. External factors influencing light-induced H2 evolution by the blue green algae, Nostoc muscorum. Zeitschrift fur Naturforschung, 34, 820-825. Eroglu, E., Gunduz, U., Yucel, M., and Turker, L., 2004.Photobiological hydrogen production by using olive mill wastewater as a sole substrate sourve. International journal of hydrogen energy, 29, 163-171. Fang, H. H. P., and Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82, 87-93. Fascetti, E., D`addario, E., Todini, O., and Robertiello, A., 1998. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid waste. International Journal of Hydrogen Energy, 23, 753-760. Frank, I. B., Chen, Y. B., Gerchman, Y., Dismukes, G. C., and Falkowski, P. G., 2005. Inhibition of nitrogenase by oxygen in marine cyanobacteria controls the global nitrogen and oxygen cycles. Biogeosciences discussions, 2, 261-273. Girbal, L., Croux, C., Vasconcelos, I., and Soucaille, P., 1995. Regulation of metabolism shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiology Review, 17, 287-297. Gottschalk, G., 1979. Bacterial Metabolism. America:Spirnger-Verlag New York Inc,167-224. Hallenback, P. C., Kochian, L. V., Weissmann, J. S., and Benemann, J. R., 1978. Solar energy conversion with Hydrogen producing cultures of the blue green algae, Anabaena cylindrica. Bioengineering Symposium, 8, 283-297. Hallenbeck, P. C., 1983. Nitrogenase reduction by electron carriers:Influence of redox potential on activity and ATP/2e- ratio. Archives of Biochemistry and Biophysics, 200, 657-660. Haury, J. F., and Hart, S., 1981. Fructose uptake and influence on growth of and nitrogen fixation by Anabaena variabilis. Journal of bacteriology, 147(1), 227-235. Hefner III, R. A., 2002. The age of energy gases. International Journal of Hydrogen Energy, 27, 1-29. Hillmer, P., and Gest, H., 1977. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulate - H2 production by growing culture. Journal of Bacteriology, 129, 724-731. Hippe, H., Andreesen, J. R., and Gottschalk, G., 1992. The Genus Clostridium – Nonmedical. In the Prokaryotes, 2nd ed, Vol.3, New York, 1800-1825. Horiuchi, J., Shimizu, T., Kanno, T. and Kobayashi M., 1999. Dynamic behavior in response to pH shift anaerobic acidogenesis with a chemstat culture. Biotechnology and Bioengineering, 13, 155-157. Imhoff, J. F., and Trüper, H. G., 1992. The genus Rhodospirillum and related Genera. In:H. Balows, H. G. Trüper., M. Dworkin, W. Hareder and K. H. Schleifer(2nd ed.),The Prokaryotes. Springer-Verlag, New York, 3, 2141-2155. Kapdan, I. K., and Kargi, F., 2006. Biohydrogen production from waste materials. Enzyme and Microbial Technology, 38, 69-582. Kargi, F., and Serpil, O., 2010. Effects of dark/light bacteria ratio on bio-hydrogen production by combined fed-batch fermentation of ground wheat starch. Biomass and bioenergy, 1-6. Kataoka, N., Miya, A., and Kiriyama, K., 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Science and Technology, 36, 41-47. Kataoka, N., Miya, A., and Kiriyama, K., 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Water Science and Technology, 36, 41-47. Khatipov, E., Miyake, M., Miyake, J., and Asada, Y., 1998. Accumulation of poly-β-hydroxybutyrate by Rhodobacter sphaeroides on various carbon and nitrogen substrates. FEMS Microbiology Letters, 162, 39-45. Kim, M. S., Baek, J. S., Yun, Y. S., and Sim, S. J., 2006. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. International Journal of Hydrogen Energy, 31, 812 – 816. Kirk, J. T. O., 1994. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press, 1-401. Kojima, E., and Yamaguchi, Y., 1988. Photoproduction of hydrogen by adapted cells of Chlorella pyrenoidosa. Journal of Fermentation Technology, 66, 19-25. Koku, H., Eróglu, I., Gunduz, U., Yucel, M., and Türker, L., 2002. Aspect of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27, 1315-1329. Kondratieva, E. N., 1976. Phototrophic micro-organisms as source of hydrogenase formation. In:H.G.Schlegel and J.Barnea(eds.),Microbial Energy Conversion, Erich Goltze KG, Göttingen, 205-216. Kotay, S. M., and Das D., 2008. Biohydrogen as a renewable energy resource prospects and potentials. International journal of hydrogen energy, 33, 258-263. Lambert, G. R., and Smith, G. D., 1977. Hydrogen formation by marine blue-green algae. FEMS Microbiology Letters, 83, 159-162. Lay, J. J., 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 68, 269-278. Lay, J. J., 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnology and Bioengineering, 74, 280-287. Lay, J. J., Lee, Y. J. and Noike, T., 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research, 11, 2579-258. Lee, C. M., Chen, P. C., Wang, C. C., and Tung, Y. C., 2002. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy, 27, 1309-1303. Lee, D. Y., Yu, Y. L., and Tatsuya, N., 2009. Continuous H2 production by anerobic mixed microflora in membrane bioreactor. Bioresource technology, 100, 690-695. Lee, Y. J., Miyahara, T., and Noike, T., 2001. Effect of iron concentration on hydrogen fermentation. Bioresource Technology, 80, 227-231. Li, C., and Fang, H. H. P., 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed culture. Critical Reviews in Environmental Science and Technology, 37, 1-39. Li, C., and Fang, H. H. P., 2007. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere, 67, 668-673. Lin, C.Y., and Lay, C. H., 2004. Carbon/nitrogen-ratio elect on fermentative hydrogen production by mixed microflora. International Journal of Hydrogen Energy, 29, 41-45. Lovitt, R. W., Shen, G. J., and Zeikus, J. G., 1988. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. Journal of Bacteriology, 170, 2809-2815. Macler, B. A., Pelroy, R. A., and Bassham, J. A., 1978. Hydrogen formation in nearly stoichiometric amounts by a Rhodopseduomonas sphaeroides mutant. Journal of Bacteriology, 138, 446-452. Madigan, M. T., Martinko, J. M., and Parker, J., 2006. Brock biology of Microorganisms. Pearson Education, Inc., 11th edition Maeland, A. J., 2003. Approaches to increasing gravimetric hydrogen storage capacities of solid hydrogen storage materials. International Journal of Hydrogen Energy, 28, 821-824. Mckee, T., and McKee, J. R., 1999. Biochemistry: an introduction. 2nd ed. McGraw-Hill Book Co., New York, 329-365. Mckee, T., and McKee, J. R., 2003. Biochemistry: an introduction. 3nd ed. McGraw-Hill Book Co., New York, 417-448. Michael, T. M., John, M. M., and Jack, P., 2000. Brock Biology of Microorganisms. 9th ed. Prentice-Hall Inc., New Jersey, 524-529. Misui, A., Matsunaga, T., Ikemoto, H., and Renuka, B. R., 1985. Organic and inorganic waste treatment and simultaneous photoproduction of hydrogen by immobilized photosynthetic bacteria. Developments in Industrial Microbiology, 26, 209-222. Miyake, J., 1998. The science of biohydrogen:an energetic view. Plenum Press, New York, 7-18. Miyake, J., Veziroglu, T. N., and Takashashi, P. K., 1990. Application of photosynthetic systems for energy conversion. In: editors. Hydrogen energy progress VIII. Proceedings 8th WHEC,Hawaii.New York:Pergamon Press, 755. Momirlan, M., and Veziroglu, T. N., 2002. Current status of hydrogen energy. Renewable & Sustainable Energy Reviews, 6, 141-179. Odom, J. M., and Wall J. D., 1983. Photoprodution of H2 from cellulose by an anaerobic bacteria Co-culture. Applied Environmental Microbiology, 45, 1300-1350. Ohta, Y., Frank, and Mitsui, A., 1981. Hydrogen production by marine photosynthetic bacteria -Effect of environment factors and substrate specificity on growth of a hydrogen-producing marine photosynthetic bacterium, Chromatium sp. Miami PBS 1071. Journal of Hydrogen Energy, 6, 451-460. Owen, W. F., Stuckey, D. C., Herly, J. B., Young, L. Y., and McCarty, P. L., 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13, 485-492. Peguin, S., and Soucaille, P., 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Applied and Environmental Microbiology. 61, 403-405 Peters, J. W., William N. Lanzilotta, Brian J. Lemon, and Lance C. Seefeldt., 1998. X-ray crystal structure of the Fe-only hydrogenase(CpI)from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science, 282, 1853-1858. Pfennig, N., 1978. Rhodocyclus purpureus gen. nov. and sp. Nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. International Journal of Systematic Bacteriology, 28, 283-288. Rai, A. K., and Abraham, G., 1995. Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabena doliolum. Journal of Applied Bacteriology, 78, 501-506. Ramos, J. L., and Guerrero, M. G., 1983. Involvement of ammonium metabolism in the inhibition of nitrogen fixation in Anabaena sp. Strain ATCC 33047. Archives of Microbiology, 136, 81-83. Ramos, J. L., Madeno, F., and Guerrero, M. G., 1985. Regulation of nitrogenase levels in Anabaena sp. Strain ATCC 33047 and other filamentous cyanobacteria. Archives of Microbiology, 141, 105-111. Ren, N., Baozhen, W., and Ju, C. H., 1997. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and eiongineering, 54, 5. Ren, N., Wang, B., and Ma, F., 1995. Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process. Proc. Of 68th Annual Water environmental Federal Conference, Miami. Rittmann B. E., and McCary P. L., 2001. Environmental Biotechnology: Principle and Applications. New York:McGraw-Hill Companies, Inc, 581-603. Sasikala, C. H., Ramana, C. H. V., and Raghuveer, P., 1995. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U.001. International Journal of Hydrogen Energy, 20, 123-126. Sasikala, K., Ramana, C. V., and Rao, P. R., 1991. Environmental regulation for optimal biomass yield and photoproduction of hydrogen by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 16, 597-601. Sasikala, K., Ramana, C. V., Raghuveer, R., 1992. Photoproduction of hydrogen from the wastewater of a distillery by Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 17, 23-27. Sasikala, K., Ramana, C. V., Rao, P. R., and Subrahmanyam, M., 1990. Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency on the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. International Journal of Hydrogen Energy, 154, 795-797. Schoenheit, P., Brandis, A., and Thauer, R. K., 1979. Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Archives of Microbiology, 120, 73-76. Schwartz, R. D., and Keller, F. A., 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH, Applied and Environmental Microbiology, 43, 1385-1392. Serebryakova, L. T., Milagros, M., Nikolay, A.Z., Ivan, N. G., and Richard, C., 1996. Reversible hydrogenas of Anabaena variabilis ATCC 29413: catalytic properties and characterization of redox centres. FEBS letters, 383, 79-82. Shah, V., Garg, N., and Madamwar, D., 2001. Ultrastructure of the fresh water cyanobacterium Anabaena variabilis SPU 003 and its application for oxygen-free hydrogen production. FEMS Microbiology Letters, 194, 71-75. Stevens, P., Vertoghen, C., Vos, P. D., and Lay, J. D., 1984. The effect of temperature and light intensity on hydrogen gas production by different Rhodopseudomonas capsulate strains. Bacteriology, 6, 277-282. Taguchi, F., Mizukami, N., Saito-Takio, T., and Hasrgawa, K., 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain No 2. Canadian Journal of Microbiology, 41, 536-540. Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R., and Lindblad, P., 2002. Hydrogenases and hydrogen metabolism of cyanobacteria. Molecular Biology Review, 66, 1-20. Tanisho, S., Kuromoto, M., and Kadokura, N., 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23, 559-563. Tanisho, S., Wakao, N., and Kosako, Y., 1983. Biological hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy, 23, 29-530. Tay, J. H., Peng, C. C., and Huihua, L., 2003. Influence of COD:N:P ratio on nitrogen and phosphorus removal in fixed-bed filter. Journal of environmental engineering. Terracciano, J. S., Schreurs, W. J. A. and Kashket, E. R. 1987. Membrance H+ conductance of Clostridium theroaceticum and Clostridium acetobutylicum. Applied and Environmental Microbiology, 53, 782-786. Troshina, O. Y., Larissa, T., Serebryakova, V., and Lindblad, P., 1996. Induction of H2-Uptake and Nitrogenase Activities in the Cyanobacterium Anabaena variabilis ATCC 29413: Effects of Hydrogen and Organic Substrate. Current Microbiol, 33, 11-15. Tsygankov, A. S., Serebryakova, L. T., Sveshnikov, D. A., Rao, K. K., Gogotov, I. N., and Hall, D. O., 1997.Hydrogen photoproduction by three different nitrogenases in whole cells of Anabaena variabilis and the dependence on pH. Interational journal of hydrogen energy, 22(9), 859-867. Ueno, Y., Haruta, S., Ishii, M., and Igarashi, Y., 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 57, 555-562. Ungerer, J. L., Brenda, S. P., and Teresa, T., 2008.Regulation of fructose transport and its effect on fructose toxicity in Anabaena spp. Journal of bacteriology, 190(24), 8155-8125. Uyar, B., Inci, E., Meral, Y., and Ufuk, G., 2008. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. International journal of hydrogen energy, 34, 4517-4523. Wang, G., and Wang, D. I. C., 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Applied and Environmental Microbiology, 47, 294-298. Wang, G., and Wang, D. I. C., 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum, Applied and Environmental Microbiology, 47, 294-298. Wang, Y. H., Shiue, L. L., I, C. C., and Sheng, S. C., 2009. Starch hydrolysis characteristics of hydrogen producing sludge in thermophilic hydrogen fermentor fed with kitchen waste. International journal of hydrogen energy, 34, 7435-7440. Wang, Y. H., Shiue, L. L., I, C. C., I, C. T., and Sheng, S. C., 2010. A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay. International journal of hydrogen energy, 1-9. Weissman, J. C., and John, R. B., 1977. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrical. Applied and environmental microbiology, 33(1), 123-131. Wilson, P., 2004. Anaerobic treatment of agricultural residues and wastewater. Winter, C. J., 2005. Into the hydrogen energy economy-milestones. International Journal of Hydrogen Energy, 30, 681-685. Wu, S. Y., Hung, C. H., Lin, C.Y., Lin, P. J., Lee, K. S., Lin, C. N., Chang, F. Y., and Chang, J. S., 2008. HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspend, granular and immobilized sludge systems using glucose as the carbon substrate. International Journal of Hydrogen Energy, 33, 1542-1549. Yakunin, A. F., Tsygankov, A. A., Troshina O.Y., and Gogotov, I. N., 1991. Growth and nitrogenase activity of continuous cultures of the purple bacteria Rhodobacter sphaeroides depending on the presence of Mo, V and W in the medium. Mikrobiyolgiya, 60, 41-46. Yokoi, H., Mori. S., Hirose, J. Hayashi, S., and Takasaki, Y., 1998. H2 production from starch by a mixed culture of Clostridium butyicum and Rhodobacter sp. M19. Biotechnology Letters, 20, 895-899. Yongzhen, T., Yang, C., Yongqlang, W., Yanling, H., and Zhihua, Z., 2007. High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. International Journal of Hydrogen Energy, 32, 200-206. Yoon, J. H., Shin, J. H., Kim, M. S., Sim, S. J., and Park, T. H., 2006. Evaluation of conversion efficiency of light to hydrogen energy by Anabaena variabilis. International Journal of Hydrogen Energy, 31, 721-727. Yu, H. O., and Fang, H. H. P., 2001. Inhibition on acidogenesis of dairy wastewater by zinc and copper. Environmental technology, 22, 1459-1465. Zhu, H., Wayne, P., Robert, B., Alxe, P., Pat, F., Mihel, B., and Peter, S., 2009. Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresource technology, 5097-5102. Zürrer, H., and Bachhofen, R., 1982. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture. Biomass, 2, 165-174.
「氫氣」是一種乾淨且熱值很高的能源(122 KJ/g),若採用生物的方式產生氫氣,利用有機廢棄物(廢水)作為基質,不但可處理污染物,且同時可以獲取能源,更可以達到淨二氧化碳零排放等多重利益。現今具有產氫能力的微生物有綠藻、藍綠細菌、紫色不含硫光合細菌和厭氧菌等,本研究所使用的微生物分別為:厭氧菌、紫色不含硫光合細菌(Rhodopseudomonas plaustris WP3-5)和藍綠細菌(Anabaena sp. CH3),由於厭氧菌、紫色不含硫光合細菌與藍綠細菌各有不同的產氫條件,若能夠有效結合這三種微生物,必能提升產氫量及產氫率,對於未來氫能源發展上有很大的助益。本研究分為兩個部分:第一部分是以篩選過的廚餘作為基質,供給厭氧菌暗醱酵產氫,富含有機酸的出流水直接供給、經UV滅菌燈或固液分離系統處理後,再作為紫色不含硫光合細菌的基質進行光合產氫,以達連續產氫的目的。第二部分乃是探討不同基質負荷率(不同HRT)對於紫色不含硫光合細菌與藍綠細菌在共培養CSTR系統中產氫的情形。
實驗中的厭氧菌(植種源)取自台中某生活污水廠污泥,並經由熱篩程序處理後直接使用,以高碳水化合物的廚餘作為基質,實驗以串聯的理念同時操作所有單元,監測水質參數並觀察暗醱酵反應槽和光合反應槽產氫的情形。結果顯示在暗醱酵反應槽和光合反應槽之間加入固液分離系統,對於暗醱酵產氫並無明顯助益,其原因為厭氧產氫菌無法穩定在反應槽之中存在,再者固液分離槽的底面積過大,不適合作為沉澱槽,污泥無法順利迴流至暗醱酵槽中,造成厭氧產氫菌持續被washout。但對於光合產氫而言,固液分離系統能明顯攔阻雜菌進入光合反應槽,若控制合適的質基負荷率,最大產氣率可達19.0 mL/L-hr,最大氫氣百分比為81%,平均產氫率為8.4 mL-H2/L-hr。
在第二部分的共培養實驗中,以不同的操作方式(半批次、半連續流和連續流)(不同的基質負荷率)觀察共培養產氫的情形。結果顯示太高的基質負荷率和較低的基質負荷率皆會造成共培養無法順利產氫,當基質負荷大於167 mg-fructose/L-day,會造成藍綠細菌停止生長,進而影響光合細菌無足夠的有機酸使用。當基質負荷率小於125 mg-fructose/L-day,藍綠細菌不會利用果糖而會利用水中的二氧化碳,再加上光合細菌不停的消耗乙酸,造成 pH劇升,抑制光合細菌和藍綠細菌產氫。

The combustion of fossil fuels not only results in gradual decrease of natural resources but also releases COx, NOx, SOx, CxHx, soot, fly ash, tar droplets and other organic compounds in burning processes. These have serious impacts on the environment. It is thus necessary to search for alternative energy resources, such as hydrogen, a clean and high heat value (122 KJ/g) energy source. If organic wastewater is used as substrate for biological hydrogen production, waste minimization and hydrogen gas production can both be achieved. It could also result in zero net carbon dioxide emission. The types of microorganisms such as anaerobic bacteria, purple nonsulfur bacteria, cyanobacteria could produce hydrogen. In this study, we intended to combine anaerobic bacteria, puple nonsulfur photosynthetic bacteria and cyanobacteria for hydrogen production. If we could integrate these three microorganisms effectively, the hydrogen production yield and hydrogen production rate will be increased.
This study was divided into two parts. In the first part, we used the screened kitchen waste as substrate for dark-fermentative hydrogen production. The effluent of dark fermentation would feed to photo-fermentative reactor directly or through different processes (UV lamp or solid-liquid separation system) for photo-fermentative hydrogen production. The second part was to explore the effect of different substrate loading rates (different HRTs) for hydrogen production of purple nonsulfur photosynthetic bacteria and cyanobacteria in co-culture system.
The inoculum of dark fermentation was collected from the sludge of a municipal wastewater treatment plant and use directly after heat treatment. The kitchen waste containing high carbohydrate was used as substrate. Different units were operated at the same time. The water quality parameters and the hydrogen production of both of the dark-fermentative reactor and the photo-fermentative reactor were monitored. The results showed that adding a solid-liquid separation system between the dark-fermentative reactor and the photo-fermentative reactor was not helpful for the hydrogen production of dark fermentation. The main reason was that anaerobic bacteria could not exist in the reactor steadily. As the solid-liquid separation tank's bottom area was too wide to be a suitable sedimentation tank, sludge could not return to the dark-fermentative reactor successfully. Yet for photosynthetic hydrogen production, the solid-liquid separation system could successfully eliminate the bacteria which might contaminate the photo-fermentative reactor. Under suitable substrate loading rate, the maximum gas production rate of the photo-fermentative reactor was 19.0 mL/L-hr, maximum percentage of hydrogen was 81%, and the average hydrogen production rate was 8.4 mL-H2/L-hr.
In the second part of the experiments different modes of operation (semi-batch, semi-continuous flow and continuous flow under different substrate loading rates) were used to observe the hydrogen production of co-culture system. The results showed that too high substrate loading rate and too low substrate loading rate would result in low hydrogen production yield of the co-culture system. When the substrate loading rate was greater than 167 mg-fructose/L-day, cyanobacteria would stop growing. Thus the purple nonsulfur bacteria did not have enough organic acid for hydrogen production. When the substrate loading rate was less than 125 mg-fructose/L-day, cyanobacteria used dissolved carbon dioxide as carbon source instead of fructose. At the same time, the purple nonsulfur bacteria would consume acetate continuously. It would cause high pH value and inhibit the hydrogen production of both of the purple nonsulfur photosynthetic bacteria and the cyanobacteria.
其他識別: U0005-2607201010174600
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.