Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5772
標題: 乳化奈米零價鐵於地下水之傳輸性評估
Transport Assessment of Applying Nano-scale Zero-Valent Iron Emulsion in Groundwater
作者: 林靜齡
Lin, Ching-Ling
關鍵字: emulsion;乳化液;nano-scale zero-valent iron;DNAPL;奈米零價鐵;應用與發展
出版社: 環境工程學系所
引用: How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. (EPA 510-B-94-003; EPA 510-B-95-007; and Guide for Corrective Action Plan Reviewers. (EPA 510-B-94-003; EPA 510-B-95-007; and EPA 510-R-04-002).&quot; Chapter X, XII. (2004). AFCEE. (June 2001). &quot;Section 1, Guidance on Soil Vapor Extraction Optimization.&quot; AFCEE and NFESC. (2004). &quot;Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas and Naval Facilities Engineering Service Center (NFESC), Port Hueneme, CA.&quot;. Alessi, D. S. and Li, Z. (2001). &quot;Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-Valent Iron.&quot; Environmental Science & Technology, 35(18), 3713-3717. B.W. Brooks, H.N. Richmond, and M. Zerfa. (1998). &quot;Modern Aspects of Emulsion Science &quot; Cambridge, 175-204. Becher, P. (1966). &quot;Micelle formation in aqueous and nonaqueous solutions, in: M.J. Schick (Ed.).&quot; Nonionic Surfactants, 478~515. Bengtsson, G., and Annadotter, H. (1989). &quot;Nitrate Reduction in a Groundwater Microcosm Determined by 15N Gas Chromatography-Mass Spectrometry.&quot; Appl. Environ. Microbiol., 55(11), 2861-2870. Borden, R. C. (2007). &quot;Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation.&quot; Journal of Contaminant Hydrology, 94(1-2), 1-12. Borden, R. C., and Rodriguez, B. X. (2006). &quot;Evaluation of Slow Release Substrates for Anaerobic Bioremediation.&quot; Bioremediation Journal, 10(1), 59 - 69. Buckman, H. O., and Brady, N. C. (1960). &quot;The nature and properties of soils.&quot; Collier-Macmillan Limited, London. Chang, Y.-i. (2006). &quot;Treatment of Trichloroethylene in Aqueous Solution Using Nanoscale Zero-Valent Iron Emulsion.&quot; Master''s Thesis. Cheng, S.-f., and Wu, S.-c. (2001). &quot;Feasibility of using metals to remediate water containing TCE.&quot; Chemosphere, 43(8), 1023-1028. Choe, S., Chang, Y.-Y., Hwang, K.-Y., and Khim, J. (2000). &quot;Kinetics of reductive denitrification by nanoscale zero-valent iron.&quot; Chemosphere, 41(8), 1307-1311. Choe, S., Lee, S.-H., Chang, Y.-Y., Hwang, K.-Y., and Khim, J. (2001). &quot;Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0.&quot; Chemosphere, 42(4), 367-372. Clayton, W. (1943). &quot;The theory of emulsions and their technical treatment.&quot; The Blakiston Co. Cooper, D. C. (2000). &quot;Zinc immobilization and magnetite formation via ferric oxide reduction by Shewanella putrefaciens 200.&quot; Environmental Science and Technology, 34(1), 100. Doong, R.-A., and Wu, S.-C. (1992). &quot;Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions.&quot; Chemosphere, 24(8), 1063-1075. EarthTech. (2001). &quot;In situ reductive treatment of groundwater contaminated with explosives and nitrate using HRCR .&quot; Technical Bulletin 2001. Ei-Aasser, M. S. (2004). &quot;Miniemulsions: overview of research and applications.&quot; JCT Research, 1(1), 20. Ellis, D. E., Lutz, E. J., Odom, J. M., Buchanan, R. J., Bartlett, C. L., Lee, M. D., Harkness, M. R., and DeWeerd, K. A. (2000). &quot;Bioaugmentation for Accelerated In Situ Anaerobic Bioremediation.&quot; Environmental Science & Technology, 34(11), 2254-2260. Fernandez, P., Andr&acute;e, V. e., Rieger, J., and K&uml;uhnle, A. (2004). &quot;Nano-emulsion formation by emulsion phase inversion.&quot; Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251(1-3), 53-58. Geiger Cherie, L., Clausen Christian, A., Brooks, K., Clausen, C., Huntley, C., Filipek, L., Reinhart Debra, D., Quinn, J., Krug, T., O''Hara, S., and Major, D. (2002). &quot;Nanoscale and Microscale Iron Emulsions for Treating DNAPL.&quot; In: Chlorinated Solvent and DNAPL Remediation, American Chemical Society, Washington, DC, 132-140. Glavee, G. N., Klabunde, K. J., Sorensen, C. M., and Hadjipanayis, G. C. (1995). &quot;Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders.&quot; Inorganic Chemistry, 34(1), 28-35. He, F. and Zhao, D. (2005). &quot;Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water.&quot; Environmental Science & Technology, 39(9), 3314-3320. Hsu, J.-P. and Nacu, A. (2003). &quot;Behavior of soybean oil-in-water emulsion stabilized by nonionic surfactant.&quot; Journal of Colloid and Interface Science, 259(2), 374-381. Hunter, W. J. (2001). &quot;Use of vegetable oil in a pilot-scale denitrifying barrier.&quot; Journal of Contaminant Hydrology, 53(1-2), 119-131. Hunter, W. J. (2002). &quot;Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil.&quot; Current Microbiology, 45(4), 287. Jung Lin, Chin Lo, and Shang Lien. (2005). &quot;Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system.&quot; Water Research, 39(6), 1037-1046. Kanel, S. R., Greneche, J.-M., and Choi, H. (2006). &quot;Arsenic(V) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material.&quot; Environmental Science & Technology, 40(6), 2045-2050. Kueper, B. H., Wealthall, G. P., Smith, J. W. N., Leharne, S. A., and Lerner, D. N. (2003). &quot;An Illustrated Handbook of DNAPL Transport and Fate in the Subsurface.&quot; Environment Agency R&D Publication 133, UK. Li, X., Scheibe, T. D., and Johnson, W. P. (2004). &quot;Apparent Decreases in Colloid Deposition Rate Coefficients with Distance of Transport under Unfavorable Deposition Conditions:??A General Phenomenon.&quot; Environmental Science & Technology, 38(21), 5616-5625. Lien, H. L. (2000). &quot;Nanoscale bimetallic particles for dehalogenation of halogenated aliphatic compounds.&quot; Dissertation. Logan, B. E. (2001). &quot;Assessing the outlook for perchlorate remediation.&quot; Environmental Science and Technology, 35(23), 482. Lutterodt, G., Basnet, M., Foppen, J. W. A., and Uhlenbrook, S. (2009). &quot;The effect of surface characteristics on the transport of multiple Escherichia coli isolates in large scale columns of quartz sand.&quot; Water Research, 43(3), 595-604. Matheson, L. J., and Tratnyek, P. G. (1994). &quot;Reductive Dehalogenation of Chlorinated Methanes by Iron Metal.&quot; Environmental Science & Technology, 28(12), 2045-2053. Milum, K. (2005). &quot;In Situ Remediation of Heavy Metal Contaminated Sediments Using Emulsified Zero-Valent Metal Particles.&quot; M.S. Thesis. University of Central Florida, Orlando, FL. Pelley, A. J. and Tufenkji, N. (2008). &quot;Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media.&quot; Journal of Colloid and Interface Science, 321(1), 74-83. Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., and Lowry, G. V. (2006). &quot;Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions.&quot; Environmental Science & Technology, 41(1), 284-290. Ponder, S. M., Darab, J. G., and Mallouk, T. E. (2000). &quot;Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-valent Iron.&quot; Environmental Science & Technology, 34(12), 2564-2569. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O''Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., and Holdsworth, T. (2005). &quot;Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron.&quot; Environmental Science & Technology, 39(5), 1309-1318. Rodin, E. (2001). &quot; Influence of Microbial Iron and Nitrate Reduction on Subsurface Iron Biogeochemistry and Contaminant Metal Mobilization.&quot; University of Alabama. Saleh, N. (2007). &quot;Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media.&quot; ENVIRONMENTAL ENGINEERING SCIENCE, 24(1), 45. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., and Garcia-Celma, M. J. (2005). &quot;Nano-emulsions.&quot; Current Opinion in Colloid & Interface Science, 10(3-4), 102-110. Sun, Y.-P., Li, X.-Q., Zhang, W.-X., and Wang, H. P. (2007). &quot;A method for the preparation of stable dispersion of zero-valent iron nanoparticles.&quot; Colloids and Surfaces A: Physicochemical and Engineering Aspects, 308(1-3), 60-66. Tufenkji, N. (2004). &quot;Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.&quot; Environmental Science and Technology, 38(2), 529. US_Wyoming_DEQ. (June 1998). &quot;Groundwater Pollution Control Program Guideline #6, Appendix A.&quot; USEPA. (1994). &quot;How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites-A Guide for Corrective Action Plan Reviewers (EPA 510-B-94-003).&quot; II-3. USEPA. (April 1999). &quot;Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, OSWER Directive 9200.14-17P.&quot; 9~10. USEPA. (May 1999). &quot;Monitored Natural Attenuation of Chlorinated Solvents - U.S.EPA Remedial Technology Fact Sheet.&quot; Varadhi, S. N., Gill, H. S., Apoldo, L. J., Liao, K., Blackman, R. A., and Wittman, W. K. (February 2005). &quot;Full-scale nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons.&quot; Natural Gas Technologies. Walstra, P. (1996). &quot;Emulsion stability, in: P. Becher (Ed.).&quot; Encyclopedia of emulsion technology, Marcel Dekker, New York, 1-62. Wang, C.-B., and Zhang, W.-x. (1997). &quot;Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs.&quot; Environmental Science & Technology, 31(7), 2154-2156. Zhang, W. (2003). &quot;Nanoscale iron particles for environmental remediation: An overview.&quot; JOURNAL OF NANOPARTICLE RESEARCH, 5(3), 323. 行政院環境保護署. (2008). &quot;土壤及地下水受比水重非水相液體污染場址之調查、驗證作業及整治工作等技術參考手冊建置計畫.&quot; (EPA-96-GA13-02-A182). 行政院環境保護署土壤及地下水污染整治基金管理委員會. http://sgw.epa.gov.tw/public/index.asp. 行政院環境保護署土壤及地下水污染整治基金管理委員會. &quot;整治手冊定稿本.&quot; 行政院環境保護署毒災應變中心,物質安全資料表. &quot;<http://www.eric.org.tw/Chm_/Chm_Index.aspx?viewPage=Query&type=MSDS>.&quot; 林毓泠. (2007). &quot;Influences of ISCO oxidant permanganate, peroxide, and persulfate on soil oxidant demand.&quot; 碩士論文,國立中興大學環境工程學系. 美國國家科學基金會(US_National_Science_Foundation). http://www.nsf.gov/od/lpa/news/03/pr0394.htm. 修改自美國FRTR網站. &quot;http://www.frtr.gov/matrix2/section4/D01-4-9b.html.&quot; 涂秀娟. (2007). &quot;奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE 之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響.&quot; 碩士學位論文,國立中山大學環境工程研究所. 張德光. (2005). &quot;結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯.&quot; 碩士學位論文,國立中山大學環境工程研究所. 曹恒光, and 連大成. (2008). &quot;淺談微乳液 &quot; 物理雙月刊,第二十三卷,第四期, 488-493. 陳崇賢. (1996). &quot;乳液概論.&quot; 界面科學會誌. 焦學瞬, and 賀明波. (2006). &quot;乳狀液與乳化技術新應用.&quot; 化學工業出版社. 楊金鐘, 洪志雄, and 張永宜. (2007). &quot;環境友善之奈米級零價鐵合成技術開發.&quot; 第四屆環境保護與奈米科技學術研討會論文集,台中市, 271-274. 歐靜枝編譯. (1992). &quot;乳化溶化技術實務.&quot; 復漢出版社印行.
摘要: 
於土壤地下水整治中,大豆油乳化液可作為生物整治助劑與包覆反應性物質(例如:奈米零價鐵)等角色,然而奈米乳化液常因穩定性等問題而限制其應用與發展。因此本研究利用相轉化法開發穩定之次微米大豆油乳化液,探討乳化過程之合成參數,並觀察其懸浮、穩定與傳輸能力。另一方面,由於奈米級零價鐵本身具有磁性,且奈米顆粒具有激烈的布朗運動,容易相互吸附聚集,進而影響其實場之應用性,因此本研究將利用穩定性良好之乳化液包覆奈米級零價鐵,並觀察其穩定性與傳輸能力。
本研究合成之大豆油乳化液粒徑約為100-300 nm間,具長時間懸浮且穩定無分層現象。其中HLB值、乳化劑添加順序、界面活性劑量與油相之比例、預乳化與乳化時間、攪拌器之轉速以及乳化液含水量對於乳化液之粒徑與穩定效果皆有影響。此外,於多孔性介質傳輸實驗之貫穿曲線顯示,於不同流速及不同背景離子強度下,乳化液之出流濃度皆於1倍孔隙體積(pore volume)後,達到初始濃度(C/C0=1),其濃度分佈呈現非高斯分佈,具有延遲現象,但總回收率仍可達到95%以上,該結果可證實本研究製備之乳化液具有傳輸能力,而延滯效應之發生推測源自於高濃度進流造成傳輸之成熟(ripening)過濾現象,以及介質表面脫附現象之發生所造成。另外,進一步量測進出流乳化液之粒徑變化顯示,乳化液於傳輸過程中,粒徑無顯著變化,亦可表示該乳化液具有穩定之傳輸能力。
另一方面,本研究製備之乳化奈米零價鐵之粒徑約為138 nm,於室溫下能儲存20天以上。透過多孔性介質傳輸實驗顯示,去離子水添加量較高之乳化奈米零價鐵,雖然其穩定性不變,但是傳輸性較好,回收率亦較高。

In the remediation of soil and groundwater, the soybean oil emulsion can serve as an adsorbent, slow-release substrates (SRS), and dispersant of reactive metals to remove contaminants. However, the application of the emulsion was limited by its stabilization and particle sizes. This study employed phase inversion method to prepare soybean oil emulsions, and investigated the impacts of the parameters of emulsified processes on the stability, suspension, and transportability of the emulsions. On the other hand, nano-scale zero-valent iron tends to aggregate because of magnetism of zero-valent iron existes and Brownian movement. Therefore, nano-scale zero-valent iron was surrounded by stable emulsion in this study, and the stabilization and transportability of emulsified nano-scale zero-valent iron were observed and evaluated.
The preliminary results indicated that the emulsion, whose droplet sizes were between 100 to 300 nm, was long-term stabilized and no stratification was observed. The results also revealed that the operational parameters will affect the droplet sizes and stabilization of soybean oil emulsion, including HLB value, the amount of surfactant and water, the ratio between oil and surfactant, the emulsified time, and the emulsified order. The recovery of emulsion used in the porous media column tests is over 95%, indicating that the transportability of the emulsion prepared is fairly well, although the trailing edge of the breakthrough curve was drawn out. No matter how the ionic strength and pore velocity increased, the stabilization of emulsion didn't be affected. Furthermore, as the transport velocity increased, the peak value of C/C0 increased and the tailing phenomena of the breakthrough curve decreased. Besides, the measurements of the droplet sizes of influent and effluent emulsions of the column tests revealed that there are no significant changes of the droplet sizes during transport in porous media, and the recovery was over 60% according to the column test using field sands. These can serve as evidences that the emulsion prepared in this study exhibited stable transportability.
The droplet sizes of emulsified nano-scale zero-valent iron prepared in this study were between 100 to 200 nm, and emulsified nano-scale zero-valent iron can be stored over 20 days. When more DI-water was added in the emulsion, the emulsified nano-scale zero-valent irons exhibited higher transportability, and the weight recoveries of the column test were also higher, although the stability remained the same.
URI: http://hdl.handle.net/11455/5772
其他識別: U0005-2607201012133400
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.