Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5780
標題: 改質觸媒應用於流體化床反應器同時控制一氧化氮及飛灰之研究
Modification of catalysts for simultaneous control of NO and fly ash in a fluidized-bed catalyst reactor
作者: 黃世騰
Huang, Shih-Teng
關鍵字: Fluidized-bed catalyst reactor;流體化觸媒反應器;Pretreatment;NO;Fly ash;Copper catalyst;前處理一氧化氮;飛灰;銅觸媒
出版社: 環境工程學系所
引用: 呂玲儀,多元醇法製備CuCo/Al2O3雙金屬觸媒對去除揮發性有機物之研究,國立中興大學環境工程研究所,2007。 林建弘,銅觸媒活性中心之研究,國立中山大學環化學研究所,碩士論文,1991。 陳珮伶、徐慈鴻、李貽華,粒狀污染物與農作物,行政院農業委員會農業藥物毒物試驗所技術專刊第108 號,2001。 黃齡宣,酸改質對金屬氧化物觸媒De-NOx效能影響之研究,國立中山大學環境工程研究所,碩士論文,2001。 董曉紅、倪允之,內蒙古環境科學,第20卷,第一期,2008。 楊憲昌,擔載銅觸媒和金觸媒之製備與應用研究,國立中央大學化學工程與材料工程研究所,博士論文,2005。 楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環境工程學系,碩士論文,2000。 蔣博欽,以流體化床控制焚化廢氣中污染物之研究,國立中興大學環境工程學系,博士論文,2001。 賴重儒,反應條件對以擔體氧化鈰觸媒催化含酚廢水濕式氧化反應之影響,嘉南藥理科技大學環境工程與科學系,碩士論文,2007。 劉光宇,氣固式流體化床過濾粒狀污染物的動態變化與影響參數之研究,國立中興大學環境工程學系,博士論文,2006。 毛健雄、毛健全、趙樹民,”煤的清潔燃燒”,科學出版社,2000。 Al-zahrani, A. A. (2000). Particle size distribution in a continuous gas-solid fluidized bed. Powder Technology, 107(1-2), 54-59. Alvin, M. A. (1998). Impact of char and ash fines on porous ceramic filter life. Fuel Processing Technology, 56(1-2), 143-168. Anthony, E. J. (1995). Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Progress in Energy and Combustion Science, 21(3), 239-268. Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212(1-2), 17-60. Boyano, A., Lazaro, M. J., Cristiani, C., Maldonado-Hodar, F. J., Forzatti, P., and Moliner, R. (2009). A comparative study Of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 149(1-3), 173-182. Briens, C. L., Bergougnou, M. A., Inculet, I. I., Baron, T., and Hazlett, J. D. (1992). Size distribution of particles entrained from fluidized beds: Electrostatic effects. Powder Technology, 70(1), 57-62. Bueno-Lopez, A., Soriano-Mora, J. M., and Garcia-Garcia, A. (2006). Study of the temperature window for the selective reduction of NOx in O2-rich gas mixtures by metal-loaded carbon. Catalysis Communications, 7(9), 678-684. Chang, C. N., Ma, Y. S., and Lo, C. W. (2002). A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 4, 267-272. Cheng, C. M., Hack, P., Chu, P., Chang, Y. N., Lin, T. Y., Ko, C. S., et al. (2009). Partitioning of Mercury, Arsenic, Selenium, Boron, and Chloride in a Full-Scale Coal Combustion Process Equipped with Selective Catalytic Reduction, Electrostatic Precipitation, and Flue Gas Desulfurization Systems. Energy and Fuels, 23, 4805-4816. Chiang, B.-C., Wey, M.-Y., and Yeh, C.-L. (2003). Control of acid gases using a fluidized bed adsorber. Journal of Hazardous Materials, 101(3), 259-272. Dumesic, J. A., Topsoe, N. Y., Topsoe, H., Chen, Y., and Slabiak, T. (1996). Kinetics of selective catalytic reduction of nitric oxide by ammonia over vanadia/titania. Journal of Catalysis, 163(2), 409-417. Faraldos, M., Anderson, J. A., Banares, M. A., Fierro, J. L. G., and Weller, S. W. (1997). On Oxygen Chemisorption for Characterization of Silica-Supported Vanadium Oxide Catalysts. Journal of Catalysis, 168(1), 110-116. Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., and Orfao, J. J. M. (1999). Modification of the surface chemistry of activated carbons. Carbon, 37(9), 1379-1389. Fino, D., Russo, N., Saracco, G., and Specchia, V. (2004). A multifunctional filter for the simultaneous removal of fly-ash and NOx from incinerator flue gases. Chemical Engineering Science, 59(22-23), 5329-5336. Forzatti, P. (2000). Environmental catalysis for stationary applications. Catalysis Today, 62(1), 51-65. Forzatti, P. (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General, 222(1-2), 221-236. Gailvez, M. E., Lazaro, M. J., and Moliner, R. (2005). Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide. Catalysis Today, 102-103, 142-147. Gao, S., Nakagawa, N., Kato, K., Inomata, M., and Tsuchiya, F. (1996). Simultaneous SO2/NOx removal by a powder-particle fluidized bed. Catalysis Today, 29(1-4), 165-169. Geldart, D., and Geldhart, D. (1986). Gas fluidization technology: John Wiley and Sons New York. Hackel, M., Schaub, G., Nacken, M., and Heidenreich, S. (2008). Kinetics of reduction and oxidation reactions for application in catalytic gas-particle-filters. Powder Technology, 180(1-2), 239-244. Heck, R. M. (1999). Catalytic abatement of nitrogen oxides-stationary applications. Catalysis Today, 53(4), 519-523. Heidenreich, S., Nacken, M., Hackel, M., and Schaub, G. (2008). Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams. Powder Technology, 180(1-2), 86-90. Hsu, L.-Y., and Teng, H. (2001). Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies. Applied Catalysis B: Environmental, 35(1), 21-30. Huang, J., Tong, Z., Huang, Y., and Zhang, J. (2008). Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 78(3-4), 309-314. Huang, Z., Liu, Z., Zhang, X., and Liu, Q. (2006). Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature. Applied Catalysis B: Environmental, 63(3-4), 260-265. Huang, Z., Zhu, Z., and Liu, Z. (2002). Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Applied Catalysis B: Environmental, 39(4), 361-368. Jeong, S. M., Jung, S. H., Yoo, K. S., and Kim, S. D. (1999). Selective Catalytic Reduction of NO by NH3 over a Bulk Sulfated CuO/γ-Al2O3 Catalyst. Industrial and Engineering Chemistry Research, 38(6), 2210-2215. Jeong, S. M., and Kim, S. D. (2000). Removal of NOX and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor. Industrial and Engineering Chemistry Research, 39(6), 1911-1916. Jiang, X., Zhou, L., Liu, J., and Han, X. (2009). A model on attrition of quartzite particles as a bed material in fluidized beds. Powder Technology, 195(1), 44-49. Kamiya, H., Deguchi, K., Gotou, J., and Horio, M. (2001). Increasing phenomena of pressure drop during dust removal using a rigid ceramic filter at high temperatures. Powder Technology, 118(1-2), 160-165. Kang, M., Park, E., Kim, J., and Yie, J. (2009). Simultaneous removal of particulates and NO by the catalytic bag filter containing MnOx catalysts. Korean Journal of Chemical Engineering, 26(1), 86-89. Kato, J. L. K. (2001). A correlation of the elutriation rate constant for adhesion particles (group C particles). Power Technology, 118, 209-218. Kijlstra, W. S., Daamen, J. C. M. L., van de Graaf, J. M., van der Linden, B., Poels, E. K., and Bliek, A. (1996). Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Applied Catalysis B: Environmental, 7(3-4), 337-357. Kuo, J. T., Smid, J., Hsiau, S. S., Wang, C. Y., and Chou, C. S. Stagnant zones in granular moving bed filters for flue gas cleanup. Filtration and Separation, 35(6), 529-534. Lee, I.-Y., Kim, D.-W., Lee, J.-B., and Yoo, K.-O. (2002). A practical scale evaluation of sulfated V2O5/TiO2 catalyst from metatitanic acid for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 90(3), 267-272. Lin, C.-L., Wey, M.-Y., and You, S.-D. (2002). The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technology, 126(3), 297-301. Liu, C.-C., and Teng, H. (2005). Cu/MCM-41 for selective catalytic NO reduction with NH3--comparison of different Cu-loading methods. Applied Catalysis B: Environmental, 58(1-2), 69-77. Liu, K.-Y., Rau, J.-Y., and Wey, M.-Y. (2009). Collection of SiO2, Al2O3 and Fe2O3 particles using a gas-solid fluidized bed filter. Journal of Hazardous Materials, 171(1-3), 102-110. Liu, K.-Y., and Wey, M.-Y. (2005). Dynamic purification of coal ash by a gas-solid fluidized bed. Chemosphere, 60(10), 1341-1348. Liu, K.-Y., and Wey, M.-Y. (2007). Filtration of nano-particles by a gas-solid fluidized bed. Journal of Hazardous Materials, 147(1-2), 618-624. Liu, Q., Liu, Z., and Huang, Z. (2005). CuO Supported on Al2O3-Coated Cordierite-Honeycomb for SO2 and NO Removal from Flue Gas: Effect of Acid Treatment of the Cordierite. Industrial and Engineering Chemistry Research, 44(10), 3497-3502. Liu, Q., Liu, Z., and Wu, W. (2009). Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst. Catalysis Today, 147(Supplement 1), S285-S289. Liu, Q. Y., Liu, Z. Y., Huang, Z. G., and Xie, G. Y. (2004). A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: preparation and evaluation. Catalysis Today, 93-5, 833-837. Liu, Z.-S. (2008). Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers. Waste Management, 28(11), 2329-2335. Llop, M. F., Casal, J., and Arnaldos, J. (2000). Expansion of gas-solid fluidized beds at pressure and high temperature. Powder Technology, 107(3), 212-225. Long, R. Q., and Yang, R. T. (1999). Selective Catalytic Reduction of Nitrogen Oxides by Ammonia over Fe3+-Exchanged TiO2-Pillared Clay Catalysts. Journal of Catalysis, 186(2), 254-268. Long, R. Q., and Yang, R. T. (2000). Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts. Applied Catalysis B: Environmental, 24(1), 13-21. Lu, C.-Y., and Wey, M.-Y. (2007). Simultaneous removal of VOC and NO by activated carbon impregnated with transition metal catalysts in combustion flue gas. Fuel Processing Technology, 88(6), 557-567. Lu, C.-Y., Wey, M.-Y., and Fu, Y.-H. (2008). The size, shape, and dispersion of active sites on AC-supported copper nanocatalysts with polyol process: The effect of precursors. Applied Catalysis A: General, 344(1-2), 36-44. Lu, K. Y., and Wey, M. Y. (2007). Filtration of fly ash using fluidized bed at 300-500 degrees C. Fuel, 86(1-2), 161-168. Manian, A. P., Abu-Rous, M., Lenninger, M., Roeder, T., Schuster, K. C., and Bechtold, T. (2008). The influence of alkali pretreatments in lyocell resin finishing - Fiber structure. Carbohydrate Polymers, 71(4), 664-671. Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., et al. (2000). Removal of SOx and NOx over activated carbon fibers. Carbon, 38(2), 227-239. Moreno-Castilla, C., Lopez-Ramon, M. V., and Carrasco-Marin, F. (2000). Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 38(14), 1995-2001. Muzio, L. J., Quartucy, G. C., and Cichanowiczy, J. E. (2002). Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies (Vol. 17, pp. 4-30): Inderscience. Nova, I., Lietti, L., Tronconi, E., and Forzatti, P. (2000). Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst. Catalysis Today, 60(1-2), 73-82. Ogura, M., Shinomiya, S.-y., Tateno, J., Nara, Y., Nomura, M., Kikuchi, E., et al. (2001). Alkali-treatment technique -- new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, 219(1-2), 33-43. Park, Y. O., Lee, K. W., and Rhee, Y. W. (2009). Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx. Journal of Industrial and Engineering Chemical, 15(1), 36-39. Pendleton, P., Wu, S. H., and Badalyan, A. (2002). Activated Carbon Oxygen Content Influence on Water and Surfactant Adsorption. Journal of Colloid and Interface Science, 246(2), 235-240. Piao, G., Aono, S., Kondoh, M., Yamazaki, R., and Mori, S. (2000). Combustion test of refuse derived fuel in a fluidized bed. Waste Management, 20(5-6), 443-447. Pietrogiacomi, D., Sannino, D., Magliano, A., Ciambelli, P., Tuti, S., and Indovina, V. (2002). The catalytic activity of CuSO4/ZrO2 for the selective catalytic reduction of NOx with NH3 in the presence of excess O2. Applied Catalysis B: Environmental, 36(3), 217-230. Querol, X., Moreno, N., Umana, J. C., Alastuey, A., Hernandez, E., Lopez-Soler, A., et al. (2002). Synthesis of zeolites from coal fly ash: an overview. International Journal of Coal Geology, 50(1-4), 413-423. Radojevic, M. (1998). Reduction of nitrogen oxides in flue gases. Environmental Pollution, 102(1, Supplement 1), 685-689. Rau, J. Y., Chen, J. C., Lin, M. D., and Wey, M. Y. (2010a). Removal the Coal Ash, NO, and SO2 Simultaneously by the Fluidized-Bed Catalyst Reactor. Energy and Fuels, 24, 1711-1719. Rau, J. Y., Chen, J. C., Wey, M. Y., and Lin, M. D. (2009). Effects of H2O and Particles on the Simultaneous Removal of SO2 and Fly Ash Using a Fluidized-Bed Sorbent/Catalyst Reactor. Industrial and Engineering Chemistry Research, 48(23), 10541-10550. Rau, J. Y., Tseng, H. H., Chiang, B. C., Wey, M. Y., and Lin, M. D. (2010b). Evaluation of SO2 oxidation and fly ash filtration by an activated carbon fluidized-bed reactor: The effects of acid modification, copper addition and operating condition. Fuel, 89(3), 732-742. Rodriguez, J. M., Sanchez, J. R., Alvaro, A., Florea, D. F., and Estevez, A. M. (2000). Fluidization and elutriation of iron oxide particles. A study of attrition and agglomeration processes in fluidized beds. Powder Technol, 111, 218-230. Roy, S., Hegde, M. S., and Madras, G. (2009). Catalysis for NOx abatement. Applied Energy, 86(11), 2283-2297. Sakuno, S., Shimizu, T., Misawa, N., Ueda, H., Sasatsu, H., and Gotou, H. (2002). NOx emission from a 71 MWe pressurized fluidized bed combustor. Fuel, 81(3), 373-379. Santana, D., Rodriguez, J. M., and Macias-Machin, A. (1999). Modelling fluidized bed elutriation of fine particles. Powder Technology, 106(1-2), 110-118. Saracco, G., Specchia, S., and Specchia, V. (1996). Catalytically modified fly-ash filters for NOx reduction with NH3. Chemical Engineering Science, 51(24), 5289-5297. Saracco, G., and Specchia, V. (1998). Simultaneous removal of nitrogen oxides and fly-ash from coal-based power-plant flue gases. Applied Thermal Engineering, 18(11), 1025-1035. Saracco, G., and Specchia, V. (2000). Catalytic filters for the abatement of volatile organic compounds. Chemical Engineering Science, 55(5), 897-908. Scala, F., and Chirone, R. (2004). Fluidized bed combustion of alternative solid fuels. Experimental Thermal and Fluid Science, 28(7), 691-699. Schaub, G., Unruh, D., Wang, J., and Turek, T. (2003). Kinetic analysis of selective catalytic NOx reduction (SCR) in a catalytic filter. Chemical Engineering and Processing, 42(5), 365-371. Seville, J. P. K., and Clift, R. (1997). Gas cleaning in demanding applications: Blackie Academic and Professional Glasgow, UK. Smolders, K., and Baeyens, J. (1997). Elutriation of fines from gas fluidized beds: mechanisms of elutriation and effect of freeboard geometry. Powder Technology, 92(1), 35-46. Song, Y.-Q., Feng, Y.-L., Liu, F., Kang, C.-L., Zhou, X.-L., Xu, L.-Y., et al. (2009). Effect of variations in pore structure and acidity of alkali treated ZSM-5 on the isomerization performance. Journal of Molecular Catalysis A: Chemical, 310(1-2), 130-137. Suarez, S., Jung, S. M., Avila, P., Grange, P., and Blanco, J. (2002). Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania. Catalysis Today, 75(1-4), 331-338. Sullivan, J. A. (2002). The Effect of Support and Cu Precursor on the Activity of Supported CuO Catalysts in the Selective Catalytic Reduction of NOx. Catalysis Letters, 79(1), 59-62. Teng, H., Hsu, L.-Y., and Lai, Y.-C. (2001). Catalytic Reduction of NO with NH3 over Carbons Impregnated with Cu and Fe. Environmental Science and Technology, 35(11), 2369-2374. Tran, K.-Q., Kilpinen, P., and Kumar, N. (2008). In-situ catalytic abatement of NOx during fluidized bed combustion--A literature study. Applied Catalysis B: Environmental, 78(1-2), 129-138. Tran, K. Q., Kilpinen, P., and Kumar, N. (2007). Opportunities to Utilize Process Waste and Ash for Development of Low-NOx Bed Materials for FBC Plants. Tran, K. Q., Kilpinen, P., and Kumar, N. (2008). In-situ catalytic abatement of NOx during fluidized bed combustion--A literature study (Vol. 78, pp. 129-138). Tseng, H.-H., and Wey, M.-Y. (2006). Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere, 62(5), 756-766. Tseng, H.-H., Wey, M.-Y., Liang, Y.-S., and Chen, K.-H. (2003). Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbon-supported metal oxides. Carbon, 41(5), 1079-1085. Wallin, M., Forser, S., Thormahlen, P., and Skoglundh, M. (2004). Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial and Engineering Chemistry Research, 43(24), 7723-7731. Wang, Y., Liu, Z., Zhan, L., Huang, Z., Liu, Q., and Ma, J. Performance of an activated carbon honeycomb supported V2O5 catalyst in simultaneous SO2 and NO removal. Chemical Engineering Science, 59(22-23), 5283-5290. Wen, C. Y. and Y., Y. H., . (1966). Mechanics of Fluidization. Chem. Eng. Progr. Symp. Ser., 62(No. 62), 100-111. Wey, M.-Y., Chen, K.-H., and Liu, K.-Y. (2005). The effect of ash and filter media characteristics on particle filtration efficiency in fluidized bed. Journal of Hazardous Materials, 121(1-3), 175-181. Wu, S. Y., and Baeyens, J. (1998). Segregation by size difference in gas fluidized beds. Powder Technology, 98(2), 139-150. Wu, S.Y., and Baeyens, J. (1991). Effect of operating temperature on minimum fluidization velocity. Powder Technol, 67, 217-220. Xiaodong, L., Jianhua, Y., Mingjiang, N., and Kefa, C. (2001). Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal, 84(2), 161-166. Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO2 at high temperature. Journal of Catalysis, 224(1), 42-49. Xuan, X., Yue, C., Li, S., and Yao, Q. (2003). Selective catalytic reduction of NO by ammonia with fly ash catalyst[small star, filled]. Fuel, 82(5), 575-579. Xue, Y. Y., Guo, Y., Zhang, Z. G., Guo, Y. L., Wang, Y. Q., and Lu, G. Z. (2008a). The role of surface properties of activated carbon in the catalytic reduction of NO by carbon. Applied Surface Science, 255(5), 2591-2595. Xue, Y. Y., Lu, G. Z., Guo, Y., Guo, Y. L., Wang, Y. Q., and Zhang, Z. G. (2008b). Effect of pretreatment method of activated carbon on the catalytic reduction of NO by carbon over CuO. Applied Catalysis B-Environmental, 79(3), 262-269. Zhu, Z., Liu, Z., Liu, S., Niu, H., Hu, T., and Liu, T. (2000). NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Applied Catalysis B: Environmental, 26(1), 25-35. Zhu, Z. H., Radovic, L. R., and Lu, G. Q. (2000). Effects of acid treatments of carbon on N2O and NO reduction by carbon-supported copper catalysts. Carbon, 38(3), 451-464. Zuercher, S., Pabst, K., and Schaub, G. (2009). Ceramic foams as structured catalyst inserts in gas-particle filters for gas reactions--Effect of backmixing. Applied Catalysis A: General, 357(1), 85-92.
摘要: 
本研究將改質觸媒應用於流體化床反應器同時去除一氧化氮(NO)及飛灰(Fly ash)。利用活性碳(AC)為擔體,先經不同溶液之前處理動作,並以硝酸銅為前驅溶液使用濕式含浸法製備成觸媒,比較不同溶液前處理對觸媒擔體改質活性之影響,並選擇活性較佳之觸媒搭配流體化床操作參數,於模擬實廠煙道條件下利用流體化觸媒反應器同時對NO 及飛灰之去除進行研究,並利用FESEM、TEM、XRD、BET 儀器對反應前後之觸媒進行特性分析加以佐證。
結果指出,對於不同前處理後之觸媒,經活性測試後以硝酸前處理觸媒具有較高NO 去除效率,依序為CuO/AC-N> CuO/AC-S> CuO/AC-H>CuO/AC-Na,而將選取硝酸前處理之觸媒作為後續實驗之觸媒。
對於不同飛灰濃度下對觸媒同時去除飛灰及NO 之影響,結果顯示,於反應時間為30 分鐘下,隨著飛灰濃度增加,觸媒床質對於飛灰之去除能力仍在負荷範圍內,所以對於飛灰之去除仍維持較高值;而同時,觸媒床質對於NO 之去除效率於飛灰濃度10,737 mg/m3 內,其NO 去除效率並未隨飛灰濃度增加有明顯變化,但當飛灰濃度增加至49,108 mg/m3,NO去除效率才下降,其推測原因為當高濃度飛灰存在煙道氣中,將增加阻塞觸媒表面之飛灰含量,進而堵塞觸媒活性位置而降低NO 還原效率。
對於不同反應時間下對觸媒同時去除飛灰及NO 之影響,由結果顯示,隨著反應時間之增加,觸媒床質對於飛灰之去除能力逐漸超過床質負荷範圍,而導致流體化觸媒床對飛灰之去除效率隨著床質中所累積之飛灰增加而降低;而同時,觸媒對於NO 之去除效率,在反應時間前90 分鐘內,觸媒對於NO 去除效率仍維持穩定值,而隨著反應時間之增加,觸媒對於NO 去除效率則明顯下降,推測為隨著反應時間之增加,將增加飛灰聚集於觸媒表面,進而抑制觸媒活性。此外,由BET 結果可以發現,當操作時間增加,提升飛灰堵塞觸媒的巨孔與中孔體積之行為。

This study investigated the simultaneous removal of nitric oxide (NO) and fly ash by a fluidized-bed catalyst reactor from simulated flue gas. The activated carbon (AC) supports were pretreated by the wet chemical treatment method. After that, the copper catalysts were prepared by wet impregnation method using the modified supports to evaluate the NO reduction efficiency. The effects of different concentrations of fly ash and operation time on the simultaneous removal of NO and fly ash were also considered. Besides, the catalysts were characterized by the field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and Brunauer Emmett Teller (BET).
The results of activity test showed that the activities of CuO/AC catalysts with different pretreated AC supports were followed the sequence as CuO/AC-N > CuO/AC-S > CuO/AC-H > CuO/AC-Na at temperature was 250 oC. Accordingly, the CuO/AC-N was employed in the experiment of simultaneous removal of NO and fly ash in flue gas.
The results of different concentrations of fly ash showed that the removal efficiency of fly ash was stable in the range of fly ash concentration between 1406 to 49108 mg/m3 within 30 min. High tolerance ability for fly ash was found by using fluidized bed catalyst reactor. On the other hand, the NO conversion presented a slight change when the concentrations of fly ash lower than 10173 mg/m3 within 30 min. But the NO conversion was decreased when the concentration of fly ash was 49108 mg/m3. The results can be explained that decreasing of the catalyst activity was owing to the active sites of the catalysts blocked or occupied by fly ash in high concentration of fly ash environment.
In the experiment of different operating time, the results indicated that removal efficiency of fly ash decreased with increasing of the operating time when the fly ash concentration was 10173 mg/m3. In addition, the NO conversion was maintained about 65 % in the operation time within 90 min, but it significantly decreased after 90 min. It can be considered that the presence of fly ash influenced the activity of CuO/AC-N catalysts. This accumulation behavior of fly ash on the catalyst surfaces reduced the performance of NO conversion when operating time increased. Moreover, the BET results also showed that the decreasing of the volumes of meso- and macro-pore with operating time increased because of fly ash blocked the catalyst surface.
URI: http://hdl.handle.net/11455/5780
其他識別: U0005-2906201011323800
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.