Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5782
標題: 科學園區下水道系統中氮化合物轉化之研究
A study on transformation of nitrogen compounds in sewer system of science park A study on transformation of nitrogen compounds in sewer system of science park A study on transformation of nitrogen compounds in sewer system of science park
作者: 廖春國
Liaw, Chun-Kuo
關鍵字: science park;科學園區;sewer;nitrogen;下水道;氮化合物
出版社: 環境工程學系所
引用: Weinhold, B.J., J.W. Power, and J.W. DoranJ.F. (2000). Agricultural accomplishments and impending concerns. Soil Sci, 165, 頁 13-30. ChenK., Ni, C. H., Chen, J. N.T. (2003). Nitrification-Denitrification of Opto-electronic Industrial,Wastewater by anoxic/Aerobic Process. Journal of environmental science and health, A38 (10), 頁 2157-2167. HillM.,J. (1999). Nitrate toxicity: myth or reality? British Journal of Nutrition, 81, 頁 343-344. Galloway, J. N., J.W. Aber, S.P. Erisman, R.W. Seitzinger, E.B. Howarth, B.J. Cowling, and CosbyJ.D. (2003). The nitrogen cascade. Bioscience, 53, 頁 341-356. Jetten, SM. et al. (1997). Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech., 35 (9), 頁 171-180. Park, J., T. I. Yoon, J. H. Bae, H. J. Seo, H. JS. Park. (2001). Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. 36, 頁 579-589. Straous, M., et al. (1997). Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (ANAMMOX) process in different configurations. Wat. Res., 31, 頁 1955-1962. GreadelR. T. E.AllenbyB. (2004). Industrial Ecology. England: the Cambridage University Press. TTripathi, S.K. (2009). Human influences on mobility of nitrogen in the environment: Needs for research and management. Acta Ecologica Sinica, 29, 頁 130-135. 王曉蓮、王淑瑩、馬勇、彭永臻。(2004年4月)。城市可持續污水生物處理技術。水處理技術,30 (2),頁 106-109。 白子易。(2001)。下水道系統生化動力模式建立之研究。中壢: 國立中央大學環境工程研究所。 行政院研究發展考核委員會。(1999) 。高科技產業之環保政策-產業現況問題分析與建議。台北: 行政院研究發展考核委員會。 李建明。(2006)。人工固氮對全球氮循環和環境的影響。生物學教學,31 (9),頁 70-71。 姜愛霞。 (2000) 。水環境氮污染的機理和防治對策。中國人口、資源與環境。10,頁 75-76。 倪震鴻。(2003)。國內第一座沉浸式生物薄膜程序廢水處理廠處理TFT-LCD 製程有機廢水回收再利用之長期操作經驗。 財團法人中興工程顧問社。(2008)。高科技產業廢水水質特性分析及管制標準探討計畫。台北: 行政院環境保護署。 張文淵。(2000) 。水環境中的氮污染特徵與影響因素。黑龍江環境通報,24 (1),頁 27-28。 莊順興。(2008)。中部科學工業園區污水下水道系統氨氮水質調查及處理功能評估計畫。朝陽科技大學,環境工程與管理系。台中: 行政院國家科學委員會中部科學工業園區管理局。 劉小軍,及高燕。(2009年5月)。淺析氮循環過程中形成的面源污染。黑龍江生態工程職業學院學報,22 (3),頁 2-4。 鄭幸雄、楊雅斐、黃良銘。(2004)。運用分子生物技術提升厭氧好氧薄膜濾離生物反應器之生物分解功能。台北: 行政院環境保護署。 鄭華安、郭崇文、陳郁良、林永壽。(2008)。南科台南園區光電產業廢水特性研究暨管制策略研訂。台北: 行政院國家科學委員會。
摘要: 
中科台中園區污水下水道系統自94年3月至今已營運滿5年,進駐廠商以光電業、半導體業等高科技產業為主要排水來源,部分廠商排放水中含有高濃度的氨氮等其他含氮物質,經由下水道收集後進入污水廠。為了因應環保署未來可能針對事業廢水氨氮及總氮污染濃度進行管制,針對主要排放廠商連接人孔及下游人孔、匯流人孔進行8次採樣,分析氮污染量在台中園區污水下水道中的宿命,除建立管理機構的廠商氨氮水質背景資料以外,也提供污水廠未來可能增加氨氮去除流程的建立與操作參數調整更詳盡的背景資料。
透過納管廠商排放水質水量歷史資料的分析,針對排放水量與氮排放質量較大的廠商放流口連接人孔為起點,下水道進入污水處理廠前的人孔為終點,進行共計8次,每次20至27個人孔採樣點進行採樣,分析氨氮、總凱氏氮、硝酸鹽氮,且其中兩次按照流達時間的水質採樣,最後一次並增加分析亞硝酸鹽氮的研究結果,發現氮質量在台中園區污水下水道流達過程中的確有削減的情況,主要是氨氮的硝化現象造成。流達過程中顯示也有脫硝的反應為次要影響因子,且氮的質量平衡明顯有受到有機氮物質轉化的影響。
不同產業別的放流水有不同的氮轉化現象,檢測結果顯示光電業的放流水中氮的轉化以硝化作用為主要反應,且明顯受到有機氮與其他污染源的影響,脫硝作用沒有明顯影響。而半導體業放流水氨氮硝化作用明顯,直接影響到氮質量變化,氮的質量平衡同樣明顯受到廢水中有機氮成分與外來污染源的影響,脫硝作用的影響程度較小。整體而言除了佔全部排水量95%以上的主要排水大廠的放流水以外,流達過程中其他污染源的排入匯入的其餘納管事業的相對少量廢水也對氮污染量的質量平衡建立產生了影響,使質量平衡中的總氮與有機氮質量呈現上升趨勢,可能是因為特定廠商排入瞬間濃度較高或採樣距離等因素所造成。建議未來可針對特定管段間的氮質量平衡全面性探討,詳加分析,並更深入檢測水中有機氮的成分如TMAH等物質濃度,有利於釐清園區下水道中氮物質的轉化機制,並可利用實際管線資訊、排水資訊建立下水道氮傳輸理論模式,使台中園區下水道氮流達質量平衡更臻完備。

The sewer system in Taichung Park of Central Taiwan Science Park is operated for five years since March 1995. The main sewage of high technology property to give the priority to this sewer system are from the optoelectronics and semiconductor industries. A parts of the enter industries drain sewage contain high concentration of nitrogen pollution as ammonia nitrogen etc., and enter the sewage treatment plant by the drainage pipeline. On purpose of studying the fate of nitrogen in the sewer system for the coming restraints on concentrate of nitrogen and ammonia nitrogen of industry sewage legislated, eight batch experiments were proceeded to provide either to build the background database of the properties of sewage or to the proposes for enhancing the waste water processing.
By analyzing the historical quality and drain volume of sewage from industries, 20 to 27 manholes on the drain pipeline were selected. Those are the connecting manholes of the industries whose are the chief source of nitrogen in this sewer system and their lower reaches. The lowest reaches point is the manhole on the end of the pipeline before the sewage treatment plant. The sewage in the selected manhole were sampled to analyze the ammonia nitrogen, total kjedal nitrogen(TKN), and the Nitrate Nitrogen concentration by eight batch experiments and the two of them were sampled in accordance with the sewage draining rate.
It is observed that the mass of nitrogen in the Taichung Park over the course of sewage flow does have a reduced, and mainly by the nitrification of ammonia nitrogen phenomenon. Other effluents from different industries have different nitrogen transformation phenomenon, and the experimental results show as follow:
1. The sewage of photovoltaic industry: The transformation of nitrogen in the effluent with nitrification as the main reaction, and obviously subject to other sources and organic nitrogen. Denitrification does not affect the transformation.
2. The sewage of Semiconductor industry: Nitrification is evident and affects the mass change in nitrogen directly. The mass balance of nitrogen in sewage also be affected by other sources and the transformation of organic nitrogen obviously. Denitrification affected lesser.
Overall, on the process of the sewage flow and the other source from other industries impact the establishment of mass balance obviously in addition to more than 95% of the total drainage of those mainly industries, even if their drainage are small percentages of all the sewage in this sewer system. Result in the mass of the total nitrogen and the organic nitrogen display a rising tendency in this system. It is may cause by particular industries whose drain sewage with high concentration nitrogen instantaneously, or sampling inaccuracy.
We suggest that it could be analyzed of the mass balance of nitrogen overall and carefully for the particular pipe section, and further to be detected of the organic ingredients of the sewer, like TMAH. It is beneficial to clarify the transformation mechanism of nitrogen in the sewage system of the science park. and we can make use of the actual pipeline information and the drainage information to establish the theoretical model of nitrogen transformation, and the mass balance of nitrogen in the sewage system will be more complete.
URI: http://hdl.handle.net/11455/5782
其他識別: U0005-3006201016065200
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.