Please use this identifier to cite or link to this item:
標題: 13X沸石於固定床與流體化床中捕獲後燃燒煙道氣二氧化碳之比較
Comparison of post-combustion CO2 capture with 13X zeolite in fixed bed and fluidized bed
作者: 廖健翔
Liao, Chien-Hsiang
關鍵字: 二氧化碳捕獲;CO2 capture;流體化床;13X沸石;循環吸脫附;Fluidized bed;CO2 adsorption/desorption;13X zeolite
出版社: 環境工程學系所
引用: 英文參考文獻: Aaron, D. and Tsouris, C., (2005) “Separation of CO2 from flue gas: A review”, Separation Science and Technology, Vol. 40: pp. 321-348. Abanades, J. C., (2002) “The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3”, Chemical Engineering Journal, Vol. 90: pp. 303-306. Abanades, J. C. and Álvarez, D., (2003) “The conversion limits in the reaction of CO2 with lime”, Energy Fuel, Vol. 17: pp. 308-315. Abanades, J. C., Alonso, M., Rodriguez, N., Gonzalez, B., Grasa, G. and Murillo, R., (2009) “Capturing CO2 from combustion flue gas with a carbonation calcination loop. Experimental results and process development”, Energy Procedia, Vol. 1: pp. 1147-1154. Ada′nez, J., Gaya′n, P., Celaya, J., Diego, L. F., Garcı′a-Labiano, F. and Abad, A., (2006) “Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion”, Industrial & Engineering Chemistry Research, Vol. 45: pp. 6075-6080. Arena, U., Langeli, C. B. and Cammarota, A., (1998) “L-valve Behaviour With Solid of Differnet Size and Density”, Powder Technology, Vol. 98: pp. 231-240. Becher, R. D. and Schlunder, E. U., (1998) “Fluidized bed granulation-the importance of a drying zone for the particle growth mechanism”, Chemical Engineering Progress, Vol. 37: pp. 1-6. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., Mccullen, S. B., Higgins, J. B. and Schlenker, J. L., (1992) “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates”, Journal of American Chemical Society, Vol. 114: pp. 10834-10843. Breck, D. W., (1974) “Zeolite Molecular Sieves”, Wiley, New York. Bredesen, R., Jordal, K. and Bolland, O., (2004) “High-temperature membranes in power generation with CO2 capture”, Chemical Engineering Processing, Vol. 43: pp. 1129-1158. Charitos, A., Hawthorne, C., Bidwe, A. R., Sivalingam, S., Schuster, A., Spliethoff, H. and Scheffknecht, G.,(2010) “Parametric investigation of the calcium looping process for CO2 capture in a 10kWth dual fluidizedbed”, International Journal of Greenhouse Gas Control, Vol. 4: pp. 776-784. Charitos, A., Rodríguez, N., Hawthorne, C., Alonso, M., Zieba, M., Arias, B., Kopanakis, G., Scheffknecht, G. and Abanades, J. C., (2011) “Experimental Validation of the Calcium Looping CO2 Capture Processwith Two Circulating Fluidized Bed Carbonator Reactors”, Industrial & Engineering Chemistry Research, Vol. 50: pp. 9685-9695. Chiang, B. C., Wey, M. Y. and Yang, W. Y., (2000) “Control of Incinerator Organics by Fluidized Bed Activated Carbon Adsorber”, Journal of Environmental Engineering (ASCE), Vol. 126: pp. 985-992. Clift, R. and Grace, J. R., (1985) “Fluidization, Academic Press”, London, pp. 73-125. Cook, J. L., Khang, S. J., Lee, S. K. and Keener, T. C., (1996) “Attrition and changes in particle size distribution of lime sorbents in a circulating fluidized bed absorber”, Powder Technology, Vol. 89: pp. 1-8. Curran, G. P., Fink, C. and Gorin, E., (1966) “CO2 Acceptor Gasification Process”, Fuel gasification, pp. 141-165. Delebarre, A., Bitaud, B. and Regnier, M. C., (1997) “Gas-solid suspensions flowing through a granular bed”, Powder Technology, Vol. 91: pp. 229-236. Erdem, E., Karapinar, N. and Donat, R., (2004) “The removal of heavy metal cations by natural zeolites”, Journal of Colloid and Interface Science, Vol. 280: pp. 309-314. Fang, F., Li, Z. S. and Cai, N. S., (2009) “Continuous CO2 Capture from Flue Gases Using a Dual Fluidized Bed Reactor with Calcium-Based Sorbent”, Industrial & Engineering Chemistry Research, Vol. 48: pp. 11140-11147. Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R. D., (2008) “Techno-economic study of CO2 capture from natural gas based hydrogen plants”, International Journal of Greenhouse Gas Control, Vol. 2: pp. 9-20. Gao, W., Butler, D. and Tomasko, D. L.,(2004) “High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms”, Langmuir, Vol. 27: pp. 8083-8089. Geldart, D. and Rhodes, M., (1986) “Developments in fluidization”, The Chemical Engineering”, February. Geldart, D., (1986) “Single Particles, Fixed and Quiescent Beds”, Gas Fluidization Technology, pp. 11-32. Gottari, G., Sand, L. B. and Mumpton, F. A., (1987) “Mineralogy and Crystal Chemistry of Zeolite, in Natural Zeolites : Occurrence, Properties”, Pergamon Press, Vol. 45: pp. 31-43. Granite, E. J. and Brien, T. O., (2005) “Review of novel methods for carbon dioxide separation from flue and fuel gases”, Fuel Processing Technology, Vol. 86: pp. 1423-1434. Gray, M. L., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens, J. R. W., Khatri, R., Chuang, S. S. C. and Filburn, T., (2005) “Improved immobilized carbon dioxide sorbents”, Fuel Processing Technology, Vol. 86: pp. 1449-1455. Han, C. and Harrison, D. P., (1994) “Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen”, Chemical Engineering Science, Vol. 49: pp. 5875-5883. Hawthorne, C., Dieter, H., Bidwe, A., Schuster, A., Scheffknecht, G., Unterberger, S. and Kas, M., (2000) “CO2 Capture with CaO in a 200 kWth Dual Fluidized Bed Pilot Plant”, 10th International conference on greenhouse gas control technologies. Huilin, L., Guangbo, Z., Rushan, B., Yongjin, C. and Gidaspow, D., (2000) “A coal combustion model for circulating fluidized bed boilers”, Fuel, Vol. 79: pp. 165-172. Hung, C. and Bai, H., (2009) “Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: A comparative study”, Separation and Purification Technology, Vol. 64: pp. 265-272. Intergovernmental Panel on Climate Change, (2005) “Special Report on Carbon dioxide Capture and Storage; Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost)”. International Energy Agency, (2010) “Scenarios & Strategiesto 2050”, Energy Technology Perspectives. Kim, S. W., Namkung, W. and Kim, S. D., (1999) “Solids Flow Characteristics in Loop-Seal of a Circulating Fluidized Bed”, Korean Journal of Chemical Engineering, Vol. 16: pp. 82-88. Kim, Y. S. and Yang, S. M., (2000) “Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents”, Separation and Purification Technology, Vol. 21: pp. 101-109. Knowles, G. P., Delaney, S. W. and Chaffee, A. L., (2006) ” Diethylenetriamine- [propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents”, Industrial & Engineering Chemistry Research, Vol. 45: pp. 2626-2633. Knowlton, T. M. and Hirsan, I., (1978) “L-valve Characterized for Solids Flow”, Hydrocarbon Processing, pp. 149-156. Kolbitsch, P., Bolha`r-Nordenkampf, J., Pro‥ll, T. and Hofbauer, H., (2010) “Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit”, International Journal of Greenhouse Gas Control, Vol. 4: pp. 180-185. Kronberger, B., Johansson, E., Löffler, G., Mattisson, T., Lyngfelt, A. and Hofbauer, H., (2004) “A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical-Looping Combustion”, Chemical Engineering & Technology, Vol. 27: pp. 1318-1326. Kunni, D. and Levenspiel, O., (1969) “Fluidization Engineering”, John Wiley, New York. Lee, S. S., Yoo, J. S., Moon, G. H., Park, S. W., Park, D. W. and Oh, K. J., (2004) “CO2 Adsorption with Attrition of Dry Sorbents in a Fluidized Bed”, Preprints of Papers- American Chemical Society, Division of Fuel Chemistry. Vol. 49: pp. 314-315. Lee, Z. H., Lee T. K., Bhatia, S. and Mohamed, A. R., (2012) “Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials”, Renewable and Sustainable Energy Reviews, Vol. 16:pp. 2599-2609. Li, L., Li, Y., Wen, X., Wang, F., Zhao, N., Xiao, F., Wei, W. and Sun, Y., (2011) “CO2 Capture over K2CO3/MgO/Al2O3 Dry Sorbent in a Fluidized Bed”, Energy & Fuels, Vol. 25: pp. 3835-3842. Mahmoud, E. A., Nakazato, T., Nakajima, S., Nakagawa, N. and Kato, K., (2004) “Separation rate of fine powders from a circulating powder-particle fluidized bed (CPPFB)”, Powder Technology, Vol. 146: pp. 46-55. Monazam, E. R., Spenik, J. and Shadle, L. J., (2013) “Fluid bed adsorption of carbon dioxide on immobilized polyethylenimine (PEI):Kinetic analysis and breakthrough behavior”, Chemical Engineering Journal, Vol. 223: pp. 795-805. Raganati, F., Ammendola, P. and Chirone, R., (2012) “CO2 adsorption on fine powders in a sound-assisted fluidized bed”. XXXV Meeting of the Italian Section of the Combustion Institute. Rasul, M. G. and Rudolph, V., (2000) “Fluidized bed combustion of Australian bagasse”, Fuel, Vol. 79: pp. 123-130. Rodrigueza, N., Alonso, M., Abanades, J. C., Charitos, A., Hawthorne, C., Scheffknecht, G., Lu, D. Y. and Anthony, E. J., (2011) “Comparison of experimental results from three dual fluidized bed test facilities capturing CO2 with CaO”, Energy Procedia, pp. 4393-4401. Rodrı′guez, N., Alonso, M. and Abanades, J. C., (2010) “Experimental Investigation of a Circulating Fluidized-Bed Reactor to Capture CO2 with CaO”, AIChE Journal, Vol. 57: pp. 1356-1366. Rydén, M. and Lyngfelt, A., (2006) “Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion”, International Journal of Hydrogen Energy, Vol. 31: pp. 1271-1283. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M. and Tejima, K., (1999) “A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes”, Chemical Engineering Research and Design. Vol. 77: pp. 62-68. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., (1985) “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure and Applied Chemistry, Vol. 57: pp. 603-619. Sun, P., Yu, D., Tang, Z., Li, H. and Huang, H., (2010) “NaY Zeolites Catalyze Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts”, Industrial & Engineering Chemistry Research, Vol. 49: pp. 9082-9087. Su, F. and Lu, C., (2012) “CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption”, Energy & Environmental Science, Vol. 5: pp. 9021-9027. Suzuki, M., (1990) “Adsorption Engineering”, Kodansha Ltd., Tokyo. Takcuchi, Y., Iwamoto, H., Miyata, N., Asano, S. and Harada, M., (1995) “Adsorption of 1-butanol and p-xylene Vapor and their Mixtures with High Silica Zeolites”, Separations Technology, Vol. 5: pp. 23-34. Veneman, R., Li, Z. S., Hogendoorn, J. A., Kersten, S. R. A. and Brilman, D. W. F., (2012) “Continuous CO2 capture in a circulating fluidized bed using supported amine sorbents”, Chemical Engineering Journal, Vol. 207-208: pp. 18-26. Wen, C. Y. and Yu, Y. H., (1966) “Mechanics of Fluidization”, Fluid Particle Technology Chemistry Technology Programs Sympathesis Series, Vol. 62: pp. 100-111. Wey, M. Y., Hwamg, J. H. and Chen, J. C., (1996) “The behavior of heavy metal Cr, Pb and Cd during waste incineration in fluidized bed under various chlorine additives”, Journal Chemical Engineering of Japan, Vol. 29: pp. 496. White, C. M., (2003) “Separation and capture of CO2 from large stationary source and sequestration in geological formations – coalbeds and deep saline aquifers”, Journal of the Air & Waste Management Association, Vol. 53: pp. 645-715. Yang, W. C., (2003) “Handbook of Fluidzation and Fluid-Particle Systems”, Marcel Dekker. Yi, C. K., Jo, S. H., Seo, Y., Lee, J. B. and Ryu, C. K., “Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors”, International Journal of Greenhouse Gas Control, Vol. 1: pp. 31-36. Yue, M. B., Yuan, C., Yi, C., Xin, D. and Zhu, J. H., (2006) “CO2 capture by as-prepared SBA-15 with an occluded organic template”, Advanced Functional Materials, Vol. 16: pp. 1717-1722. Zhu, Q. and Li, H., (1996) “Study on Magnetic Fluidization of Group C Powders”, Powder Technology, Vol. 86: pp. 179-185. 中文參考文獻: 吳石乙,(1997) “流化床在工業上之應用—流化床乾燥器介紹” ,化工,第5期,84-99。 吳榮宗,(1989) “工業觸媒概論”,國興出版社。 何嘉益,(2009) “液態封裝材料體積收縮行為之研究” ,碩士論文,國立成功大學工程科學系,台南。 柳萬霞、徐恆文、黃欽銘、陳威丞、歐陽湘,(2012) “燃燒後捕獲二氧化碳技術-鈣迴路捕獲CO2技術國際現況與國內發展介紹” ,工業污染防治,第121期,71。 洪瑛鍈、藍啟仁,(2001) “物理方法固定二氧化碳的現況” ,台電工程月刊,第629期,76-90。 徐如人、龐文琴、于吉紅,(2004) “分子篩與多孔材料化學” ,科學出版社,356-409。 黃裕銘,(2003) “混和醇胺AMP/MDEA水溶液吸收二氧化碳之反應動力學數據量測研究” ,碩士論文,中原大學化學工程學系,桃園。 張白青,(2006) “固態核磁共振於沸石Y經脫鋁及氟化後之鑑定與其機制探討” ,博士論文,國立中央大學化學研究所,桃園。 陳君豪,(2001) “利用真空變壓吸附法濃縮及回收二氧化碳” ,碩士論文,國立中央大學化學工程研究所,桃園。 陳科豪,(2003) “以流體化床濾除煙道氣中粒狀物之研究” ,碩士論文,國立中興大學環境工程學系,台中。 游世達,(2002) “氣泡式流體化床焚化爐中熱傳特性之研究” ,碩士論文,國立中興大學環境工程學系,台中。 楊家寶,(2004) “混和醇胺TEA+PZ水溶液吸收二氧化碳反應動力學數據量測研究” ,碩士論文,中原大學化學工程學系,桃園。 楊玫華,(2012) “商用沸石對二氧化碳/甲烷吸附分離之效能提升研究” ,碩士論文,國立交通大學環境工程研究所,新竹。 蘇峰生,(2011) “低溫二氧化碳吸附劑篩選之研究” ,博士論文,國立中興大學環境工程學系,台中。 錢建嵩、黃正忠、陽玉樹、歐建志、張瑞顯、吳耿東、游逸將,(1992) “流體化床技術” ,高立圖書有限公司。 顏秀慧,(1998) “沸石對揮發性有機物吸附行為之研究” ,博士論文,國立台灣大學環境工程研究所,台北。
第一階段為尋找最佳尺寸之13X運用於流體化床中進行其CO2之捕獲。其研究結果顯示,當吸附環境30 °C、含水率0 vol%、流速0.38 m/s以及進流15% CO2條件下,球狀13X (0.3-0.6 mm)具有最高之工作吸附量(qw)為74.5 mg/g。
第二階段為固定床與流體化床100次循環吸脫附試驗之比較,經實驗結果得之,固定床之工作吸附量(qw)平均值為69.9±3.7 mg/g、吸附指標(AI)平均值為73.8±3.9 %、CO2去除率為99.8±0.1 %、最高CO2脫附濃度為99.5 %;流體化床之qw平均值為49.8±2.5 mg/g、AI平均值為67.3±5.4 %、CO2去除率為99.4±1.1 %、最高CO2脫附濃度為99.5 %、平均固體迴流率則為2.52±0.13 kg/m2-s。而於實驗結果得知,固定床之吸附量較流體化床高出1.4倍左右,但其操作時間為流體化床之1.67倍,因此單位操作時間之CO2累積捕獲量,其流體化床比固定床高出1.2倍左右。

13X zeolite were employed as adsorbents for CO2 capture form gas steams by the fluidized bed. Research results were divided into the following two parts.
The first part was found the optimum size of 13X zeolite to capture carbon dioxide. The results indicate that the best of adsorption capacity was obtained under 30 �C with 15 vol% CO2 inlet using sphere 13X zeolite (0.3-0.6 mm). The working capacity (qw) of sphere 13X zeolite (0.3-0.6 mm) reached 74.5 mg/g under 0.38 m/s of superficial velocity.
The second part was the comparison of CO2 adsorption/desorption with 13X zeolite between fixed bed and fluidized bed. The results showed that after 100 cycles, the average working capacity was 49.8�2.5 mg/g , which was 28.8 % lower than fixed bed. However, the CO2 accumulation amount per operation time in fluidized bed was 20 % higher than that in fixed bed.
Above results reflect that the fluidized bed possesses higher CO2 capture rate than the fixed bed and appears more practical in the flue gas application.
其他識別: U0005-1507201312081800
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.