Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5790
標題: NiO/NiAl2O4 載氧體應用於化學迴圈之研究
A study of NiO/NiAl2O4 oxygen carrier application for chemical looping combustion
作者: 林婉慈
Lin, Wan-Tzu
關鍵字: 化學迴圈燃燒;chemical looping combustion;含浸法;鎳鋁尖晶石;載氧體;熱重分析儀;impregnation method;NiAl2O4 spinel;oxygen carrier;thermal gravimetric analyzer
出版社: 環境工程學系所
引用: Almanza, A., and Valencia, J. S. (2004). "Influence of some variables of the sol-gel process in the textural and structural properties of a NiAl2O4 support." Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 43(3), 613-619. Arjmand, M., Azad, A.-M., Leion, H., Mattisson, T., and Lyngfelt, A. (2012). "Evaluation of CuAl2O4 as an oxygen carrier in chemical-looping combustion." Industrial and Engineering Chemistry Research, 51(43), 13924-13934. Barrett, E. P., Leslie, G., Joyner, L. G., Paul, P., and Halenda, P. P. (1951). "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms." J. Am. Chem.Soc., 73(1), 373-380. Bayraktar, O., and Kugler, E. L. (2004). "Temperature-programmed reduction of metal-contaminated fluid catalytic cracking (FCC) catalysts." Applied Catalysis A: General, 260(1), 125-132. Bolt, P. H., Habraken, F., and Geus, J. W. (1998). "Formation of nickel, cobalt, copper, and iron aluminates from alpha- and gamma-alumina-supported oxides: A comparative study." Journal of Solid State Chemistry, 135(1), 59-69. Brunaller, S., Emmett, P. H., and Teller, E. (1938). "Adsorption of Gases in Multimolecular Layers." J. Am. Chem. Soc., 60(2), 309 - 319. Chirona, F.-X., Patience, G. S., and Rifflartb, S. (2011). "Hydrogen production through chemical looping using NiO/NiAl2O4 as oxygen carrier." Chemical Engineering Science, 66(24), 6324-6330. Cho, P., Mattisson, T., and Lyngfelt, A. (2004). "Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion." Fuel, 83(9), 1215-1225. Cho, P., Mattisson, T., and Lyngfelt, A. (2005). "Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion." Industrial and Engineering Chemistry Research, 44(4), 668-676. Cui, H., Zayat, M., and Levy, D. (2005). "A sol-gel route using propylene oxide as a gelation agent to synthesize spherical NiAl2O4 nanoparticles." Journal of Non-Crystalline Solids, 351(24-26), 2102-2106. Diego, L. F. d., Gaya’n, P., Garcı’a-Labiano Francisco , Celaya, J., Abad , A., and Ada’nez, J. (2005). "Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion:Avoiding Fluidized Bed Agglomeration." Energy & Fuels, 19(5), 1850-1856. Figueroa, J., Fout, T., Plasynski, S., McIlvried, H., Rameshwar, D., and Srivastava. (2008). "Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program." International Journal of Greenhouse Gas Control, 2(1), 9-20. Forero, C. R., Gayan, P., Garcia-Labiano, F., Diego, L. F. d., Abad, A., and Adadnez, J. (2011). "High temperature behaviour of a CuO/γAl2O3 oxygen carrier for chemical-looping combustion." International Journal of Greenhouse Gas Control, 5(4), 659-667. Gayan, P., Diego, L. F. d., Garcia-Labiano, F., Adanez, J., Abad, A., and Dueso, C. (2008). "Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion." Fuel, 87(12), 2641-2650. Ishida, M., Yamamoto, M., and Ohba, T. (2002). "Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃." Energy Conversion and Management, 43(9-12), 1469-1478. Johansson, M., Mattisson, T., and Lyngfelt, A. (2006). "Investigation of Mn3O4 With Stabilized ZrO2 for Chemical-Looping Combustion." Chemical Engineering Research and Design, 84(9), 807-818. Kwak, B. H., Youn, H. K., and Chung, J. S. (2008). "Ni and metal aluminate mixtures for solid oxide fuel cell anode supports." Journal of Power Sources, 185(2), 633-640. Lambert, A., Briault, P., and Comte, E. (2011). "Spinel mixed oxides as oxygen carriers for chemical looping combustion." Energy Procedia, 4(0), 318-323. Lenka, R. K., Mahata, T., Sinha, P. K., and Tyagi, A. K. (2008). "Combustion synthrsis of gadolinia-doaped ceria using glycine and urea fuels." Lin, H.-Y., Chen, Y.-W., and Li, C. (2003). "The mechanism of reduction of iron oxide by hydrogen." Thermochimica Acta, 400(1-2), 61-67. Luo, M.-F., Fang, P., He, M., and Xie, Y.-L. (2005). "In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation." Journal of Molecular Catalysis A: Chemical, 239(1-2), 243-248. Luo, M.-F., Zhong, Y.-J., Yuan, X.-X., and Zheng, X.-M. (1997). "TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation." Applied Catalysis A: General, 162(1-2), 121-131. Mattisson, T., Jerndal, E., Linderholm, C., and Lyngfelt, A. (2011). "Reactivity of a spray-dried NiO/NiAl2O4 oxygen carrier for chemical-looping combustion." Chemical Engineering Science, 66(20), 4636-4644. Moldenhauer, P., Ryden, M., Mattisson, T., and Lyngfelt, A. (2012). "Chemical-looping combustion and chemical-looping with oxygen uncoupling of kerosene with Mn- and Cu-based oxygen carriers in a circulating fluidized-bed 300 W laboratory reactor." Fuel Processing Technology, 104, 378-389. Molina, R., and Poncelet, G. (1998). "α-Alumina-Supported Nickel Catalysts Prepared from Nickel Acetylacetonate: A TPR Study." Journal of Catalysis, 173(2), 257-267. Otero, A. C., Penarroya Mentruit, M., Lopez Lopez, A. J., and Parra, J. B. (2001). "High surface area nickel aluminate spinels prepared by a sol - gel method." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180(3), 253-258. Otero Areana, C., Penarroya Mentruit, M., Lopez Lopeza, A. J., and Parra, J. B. (2001). "High surface area nickel aluminate spinels prepared by a sol-gel method." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 180(3), 253-258. Patil, K. C., Aruna, S. T., and Mimani, T. (2002). "Combustion synthesis: an update." Current Opinion in Solid State and Materials Science, 6(6), 507-512. Pelletier, L., and Liu, D. D. S. (2007). "Stable nickel catalysts with alumina-aluminum phosphate supports for partial oxidation and carbon dioxide reforming of methane." Applied Catalysis A: General, 317(2), 293-298. Ribeiro, N. F. P., Neto, R. C. R., Moya, S. F., Souza, M. M. V. M., and Schmal, M. "Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production." International Journal of Hydrogen Energy, 35(21), 11725-11732. Ribeiro, N. F. P., Neto, R. C. R., Moya, S. F., Souza, M. M. V. M., and Schmal, M. (2010). "Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production." International Journal of Hydrogen Energy, 35(21), 11725-11732. Schwebel, G. L., Leion, H., and Krumm, W. (2012). "Comparison of natural ilmenites as oxygen carriers in chemical-looping combustion and influence of water gas shift reaction on gas composition." Chemical Engineering Research and Design, 90(9), 1351-1360. Sedor, K. E., Hossain, M. M., and Lasa Hugo I. de. (2008). "Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC)." Chemical Engineering Science, 63(11), 2994-3007. Siriwardane, R., Tian, H., Richards, G., Simonyi, T., and Poston, J. (2009). "Chemical-Looping Combustion of Coal with Metal Oxide Oxygen Carriers." Energy & Fuels, 23(8), 3885-3892. Stella, K. C., and Nesaraj, A. S. (2010). "Effect of fuels on the combustion synthesis of NiAl2O4 spinel particles." Materials Science and Engineering, 7(2). Swaan, H. M., Rouanet, R., Widyananda, P., and Mirodatos, C. (1997). "Partial oxidation of methane over nickel- and cobalt-based catalysts." Studies in Surface Science and Catalysis, Elsevier, 447-453. Tian, H., and Guo, Q. (2011). "Thermodynamic investigation into carbon deposition and sulfur evolution in a Ca-based chemical-looping combustion system." Chemical Engineering Research and Design, 89(9), 1524-1532. Tseng, Y.-H., Ma, J.-L., Chin, C.-P., Kuo, Y.-L., and Ku, Y. (2013). "Preparation of composite nickel–iron oxide as highly reactive oxygen carrier for chemical-looping combustion process." Journal of the Taiwan Institute of Chemical Engineers(0). Wang, B., Zhao, H., Zheng, Y., Liu, Z., Yan, R., and Zheng, C. (2012). "Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers." Fuel Processing Technology, 96(0), 104-115. Wang, S. R., and Shen, P. (1998). "Rotation-coalescence of confined particles in Ni1-x O/NiAl2O4 composites." Materials Science and Engineering, 7. Zhao, H.-b., Liu, L.-m., Xu, D., Zheng, C.-g., Liu, G.-j., and Jiang, L.-l. (2008). "NiO/NiAl2O4 oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas." Journal of Fuel Chemistry and Technology, 36(3), 261-266. 王進威. (2006). "擬合 X 光繞射峰形判定奈米微粒粉末的粒徑分佈," 中央大學. 王德純, and 段維新. (2001). "氧化鋁/鎳複合材與氧化鋁/鎳/氧化鋯複合材的氧化行爲." 材料科學與工程, 33(3), 166-170. 邓伟强, 曾令可, 刘艳春, 税安泽, 王慧, and 段碧林. (2007). "稀释剂对氮氧化物生成的影响." 硅酸盐通報, 26(1), 138-142. 玄伟伟, and 张建胜. (2012). "化學鏈燃燒鐵基載氧體還原反應積碳趨勢." 化工學報, 63(3), 904-909. 朱敬平. (2011). "化學迴圈燃燒技術發展概況簡介." 中興工程(110), 63-72. 吳貞瑩. (2010). "以Fe2O3/SiO2載氧體在高溫化學環路燃燒一氧化碳及氫氣之研究," 成功大學. 林欣志. (2011). "以氧化鈦及氧化鋯擔載鎳及鐵之載氧體製備與測試," 中央大學. 洪正宗, 許世雄, and 王淑麗. (2010). "二氧化碳捕獲技術現況及發展." 石油季刊, 46(3), 35-47. 洪正宗, 許世雄, 蔡銘璋, 陳孟宏, and 沈宏俊. (2011). "富氧燃燒二氧化碳捕獲技術發展探討." 石油季刊, 47(3), 19-30. 徐恆文. (2007). "二氧化碳的捕獲與分離." 科學發展, 413, 24-27. 秦翠娟, 沈来宏, 郑敏, and 肖军. (2009). "基于CaSO4载氧体的煤化学链燃烧还原反应实验研究 " 中國電機工程學報, 29(17), 43-50. 能源資訊網 (2012). 應用化學迴圈程序於燃燒效率之提升, from http://emis.erl.itri.org.tw/EMIS/EMIS/EnergynTwo/searea/TechNew/File/94/62.應用化學迴圈程序於燃燒效率之提升.pdf 陳定千, 沈來宏, 肖軍, 宋濤, 顧海明, and 張思文. (2012). "基于镍基修饰的铁矿石载氧体煤化学链燃烧实验." 燃料化學學報, 40(3), 267-272. 郭耿仲. (2008). "化學迴圈燃燒之冷模," 臺灣大學. 郭庆杰, 张建社, and 刘永卓. (2011). "化学链燃烧载氧体颗粒制备技术研究." 彭鏡禹, and 徐恆文. (2012). "化學迴圈技術-二氧化碳捕獲之機會與挑戰." 燃燒季刊(79), 75-87. 黃其清, 蔡日升, and 黃廷翰. (2005). "以燃燒合成法製備奈米級電子陶瓷氧化物微粉." 化工學報, 52(4), 82-103. 經濟部能源局. (2012). "我國燃料燃燒二氧化碳排放統計與分析 ". 劉楊先, 張軍, 盛昌棟, 張永春, and 袁士杰. (2008). "化學鏈燃燒技術中載氧體的最新研究進展." Modern Chemical Industry,, 09, 27-32. 歐正章. (2008). "燃煤鍋爐排煙脫硝效率提昇改善." 2008.10產業綠色技術研討會論文集. 顧洋, 郭俞麟, 曾堯宣, and 林怡均. (2011). "節能性化學迴圈反應程序處理電子業廢溶劑之技術開發." 郑敏, 沈来宏, and 肖军. (2008). "化学链燃烧钙基载氧体CaSO4与CO在不同温度下的反应行为." 化工學報, 59(11), 2812-2818.
摘要: 
將充足的氧氣提供給燃料,能大幅提高化石燃料燃燒後廢氣排放中的二氧化碳濃度,有助提升後續二氧化碳的捕集效能。本研究主要探討以鎳基載氧體進行化學迴圈燃燒的效能,實驗過程中以尿素燃燒法製備鎳鋁尖晶石為擔體,分別探討製備擔體時硝酸鎳與尿素的比例、擔體在不同鍛燒溫度(700 °C、800 °C與900 °C)下的影響,後續再以氧化鎳為活性金屬,藉由含浸法進行載氧體的製備;控制活性金屬添加比例與不同活性金屬(如鐵基、銅基),比較對化學迴圈燃燒效能的影響;並以X光繞射儀(XRD)、氫-程式升溫還原(TPR)、場發射掃描式電子顯微鏡(FESEM)及比表面積分析儀(BET)等儀器測定所製備的擔體及載氧體之物化特性,比對分析其結晶構造、孔隙分布及還原溫度情形,再以熱重分析儀(TGA)進行還原-氧化反應測試其載氧能力,並以5次迴圈與20次迴圈測試其穩定度。結果顯示添加Urea比例與NiO比例為1:1時,在900 °C鍛燒後,擔持70 wt%的NiO,能測試出最大的載氧效果,且以NiAl2O4做為惰性載體時,能避免活性金屬中的NiO與擔體中的Al反應而降低氧化效能,再經過反覆的還原-氧化反應重複20迴圈後,載氧體的再氧化能力,依然不變,表示其穩定性高;整體而言,選擇結晶強度較弱、比表面積較大且微孔比例較少的NiAl2O4擔體,較可能有較大的載氧量,而研究結果顯示,NiO/NiAl2O4做為以甲烷為燃料的化學迴圈燃燒載氧體是個可研究開發的材料。

For combustion with CO2 capture, chemical looping combustion (CLC) with inherent separation of CO2 is a promising technology. CLC is the new technology developed in recent years, which is used the metal oxide as an oxygen carrier, which can help to enhance the capturing of carbon dioxide effectively. This study was discussed the performance of nickel-based oxygen carrier in chemical looping. The experiment was synthesized NiAl2O4 spinel as a support through the urea combustion method, evaluating the effect of urea/nitrate (U/N) ratio and calcination temperature. In addition, the effects of supports and metal loadings for supported oxygen carriers, on the performance of chemical looping combustion were compared. In addition, several transition metal based oxides (Cu and Fe) with the spinel structure have been prepared, characterized and compared.
Characterization of samples was analyzed by using the techniques of Brunauer–Emmett–Teller (BET) surface area, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and temperature-programmed reduction (TPR). The capacity of oxygen carrier was tested using a TGA apparatus simulating the oxidation and reduction periods in CLC. In this work, the behavior of an impregnated supported oxygen carrier (MO/NiAl2O4) was studied in a TGA using methane as fuel gas and fuel and the air reactor temperatures at 850 °C. The stability of oxygen carriers were exposed to a total of five and twenty oxidation/reduction cycles.
Experimental results of chemical looping combustion indicated that the highest oxygen transfer capacity is achieved when the NiO/NiAl2O4 oxygen carrier is supported on NiAl2O4 support with U/N ratio of 1 and calcination temperature of 900 °C. Moreover, NiAl2O4 as inert supports can avoid the reaction between NiO and Al during chemical looping combustion processes. The 7Ni-UN1-9 was showed high stability after repeating re-oxidation reaction in twenty cycles. In summary, a NiAl2O4 carrier support with low crystallinity, large specific surface area and low microporosity is likely to have a higher oxygen transfer capacity. This study is of interest for application of NiO/NiAl2O4 materials in CLC processes.
URI: http://hdl.handle.net/11455/5790
其他識別: U0005-1708201320054300
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.