Please use this identifier to cite or link to this item:
標題: Pt/TiO2-xNx/SrTiO3光觸媒以提升太陽能光解水產氫速率
Enhancement of solar light induced water splitting for hydrogen production over Pt/TiO2-xNx/SrTiO3 photocatalysts
作者: 黃柄橓
Huang, Bing-Shun
關鍵字: 再生能源;Renewable energy;太陽能;產氫;光催化;二氧化鈦;Solar energy;H2 production;Photocatalysis;TiO2
出版社: 環境工程學系所
引用: An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., Ding, K., 2007. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon, 45, 1795-1801. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293, 269-271. Awate, S.V., Deshpande, S.S., Rakesh, K., Dhanasekaran, P., Gupta, N.M., 2011. Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water. Physical Chemistry Chemical Physics, 13, 11329-11339. Bancroft, G.M., Adams, I., Coatsworth, L.L., Bennewitz, C.D., Brown, J.D., Westwood, W.D., 1975. ESCA study of sputtered platinum films. Analytical Chemistry, 47, 586-588. Bessekhouad, Y., Chaoui, N., Trzpit, M., Ghazzal, N., Robert, D., Weber, J.V., 2006. UV-vis versus visible degradation of acid orange II in a coupled CdS/TiO2 semiconductors suspension. Journal of Photochemistry and Photobiology A: Chemistry, 183, 218-224. Bleiner, D., Lienemann, P., Ulrich, A., Vonmont, H., Wichser, A., 2003. Spatially resolved quantitative profiling of compositionally graded perovskite layers using laser ablation-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 18, 1146-1153. Blount, M.C., Buchholz, J.A., Falconer, J.L., 2001. Photocatalytic decomposition of aliphatic alcohols, acids, and esters. Journal of Catalysis, 197, 303-314. Bokhimi, X., Morales, A., Novaro, O., Lopez, T., Chimal, O., Asomoza, M., Gomez, R., 1997. Effect of copper precursor on the stabilization of titania phases, and the optical properties of Cu/TiO2 prepared with the sol-gel technique. Chemistry of Materials, 9, 2616-2620. Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., Jr., Smith, J.V., 1987. Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of the American Chemical Society, 109, 3639-3646. Chen, C., Bai, H., Chang, C., 2007. Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. The Journal of Physical Chemistry C, 111, 15228-15235. Chen, X., Burda, C., 2004. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. The Journal of Physical Chemistry B, 108, 15446-15449. Chen, X., Lou, Y.-B., Samia, A.C.S., Burda, C., Gole, J.L., 2005. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Advanced Functional Materials, 15, 41-49. Chen, X.B., Shen, S.H., Guo, L.J., Mao, S.S., 2010. Semiconductor-based photocatalytic hydrogen generation. Chemical reviews, 110, 6503-6570. Chen, Y.-F., Lee, C.-Y., Yeng, M.-Y., Chiu, H.-T., 2003. The effect of calcination temperature on the crystallinity of TiO2 nanopowders. Journal of Crystal Growth, 247, 363-370. Cheng, P., Deng, C., Gu, M., Dai, X., 2008. Effect of urea on the photoactivity of titania powder prepared by sol-gel method. Materials Chemistry and Physics, 107, 77-81. Choi, H.-J., Kang, M., 2007. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 32, 3841-3848. Chornik, B., Fuenzalida, V.A., Grahmann, C.R., Labbe, R., 1997. Water adsorption properties of amorphous BaTiO3 thin films. Vacuum, 48, 161-164. Cong, Y., Zhang, J., Chen, F., Anpo, M., 2007. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C, 111, 6976-6982. Croy, J., Mostafa, S., Liu, J., Sohn, Y.-h., Roldan Cuenya, B., 2007. Size dependent study of MeOH decomposition over size-selected Pt nanoparticles synthesized via micelle encapsulation. Catalysis Letters, 118, 1-7. Cui, W., Feng, L., Xu, C., Lu, S., Qiu, F., 2004. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film. Catalysis Communications, 5, 533-536. Das, D.P., Parida, K., De, B.R., 2005. Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphate. Journal of Molecular Catalysis A: Chemical, 240, 1-6. Du, M.-H., Feng, J., Zhang, S.B., 2007. Photo-oxidation of polyhydroxyl molecules on TiO2 surfaces: From hole scavenging to light-induced self-assembly of TiO2-cyclodextrin wires. Physical Review Letters, 98, 066102. Ehre, D., Cohen, H., Lyahovitskaya, V., Lubomirsky, I., 2008. X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3. Physical Review B, 77, 184106. Everett, D.H., 1985. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure and applied chemistry, 57, 603. Florin, N., Harris, A., 2007. Hydrogen production from biomass. The Environmentalist, 27, 207-215. Fu, X., Clark, L.A., Zeltner, W.A., Anderson, M.A., 1996. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology A: Chemistry, 97, 181-186. Fu, X., Long, J., Wang, X., Leung, D.Y.C., Ding, Z., Wu, L., Zhang, Z., Li, Z., Fu, X., 2008. Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International Journal of Hydrogen Energy, 33, 6484-6491. Fujishima, A., Rao, T.N., Tryk, D.A., 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21. Gallo, A., Marelli, M., Psaro, R., Gombac, V., Montini, T., Fornasiero, P., Pievo, R., Santo, V.D., 2012. Bimetallic Au-Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol. Green Chemistry, 14. Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X., 2003. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. The Journal of Physical Chemistry B, 108, 1230-1240. Gopinath, C.S., 2006. Comment on “Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles”. The Journal of Physical Chemistry B, 110, 7079-7080. Gribb, A.A., 1997. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. American Mineralogist, 82, 717. Gyorgy, E., Perez del Pino, A., Serra, P., Morenza, J.L., 2003. Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surface and Coatings Technology, 173, 265-270. Habibi, M.H., Hassanzadeh, A., Mahdavi, S., 2005. The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 172, 89-96. Hamal, D.B., Klabunde, K.J., 2007. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science, 311, 514-522. Hoffmann MR, M.S., Choi WY, Bahnemann DW. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews , 95, 69–96. Honda, A.J.F.a.K., 1982. Visible-light-induced water cleavage and stabilization of n-type cadmium sulfide to photocorrosion with surface-attached polypyrrole-catalyst coating. The Journal of Physical Chemistry, 86 1933–1935. Hong, Y.C., Bang, C.U., Shin, D.H., Uhm, H.S., 2005. Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma. Chemical physics letters, 413, 454-457. Hung, W.-C., Chen, Y.-C., Chu, H., Tseng, T.-K., 2008. Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science, 255, 2205-2213. Ishibashi, K.-i., Fujishima, A., Watanabe, T., Hashimoto, K., 2000. Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 134, 139-142. Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., Ogale, S.B., 2008. N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method. The Journal of Physical Chemistry C, 112, 14595-14602. Jang, J.S., Choi, S.H., Kim, H.G., Lee, J.S., 2008. Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light. Journal of Physical Chemistry C, 112, 17200-17205. Jang, J.S., Li, W., Oh, S.H., Lee, J.S., 2006. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chemical Physics Letters, 425, 278-282. Jin, P., Miao, L., Tanemura, S., Xu, G., Tazawa, M., Yoshimura, K., 2003. Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Applied Surface Science, 212-213, 775-781. Jin, Z., Zhang, X., Li, Y., Li, S., Lu, G., 2007. 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications, 8, 1267-1273. Jing, D., Guo, L., Zhao, L., Zhang, X., Liu, H., Li, M., Shen, S., Liu, G., Hu, X., Zhang, X., Zhang, K., Ma, L., Guo, P., 2010. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. International Journal of Hydrogen Energy, 35, 7087-7097. Jing, L., Xu, Z., Sun, X., Shang, J., Cai, W., 2001. The surface properties and photocatalytic activities of ZnO ultrafine particles. Applied Surface Science, 180, 308-314. Kamat, P.V., 2007. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. The Journal of Physical Chemistry C, 111, 2834-2860. Kamat, P.V., Gevaert, M., Vinodgopal, K., 1997. Photochemistry on semiconductor surfaces. visible light induced oxidation of C60 on TiO2 nanoparticles. The Journal of Physical Chemistry B, 101, 4422-4427. Kandiel, T.A., Ismail, A.A., Bahnemann, D.W., 2011. Mesoporous TiO2 nanostructures: a route to minimize Pt loading on titania photocatalysts for hydrogen production. Physical Chemistry Chemical Physics, 13. Kim, E.J., Hahn, S.-H., 2001. Microstructural changes of microemulsion-mediated TiO2 particles during calcination. Materials Letters, 49, 244-249. Kim, S.B., Hwang, H.T., Hong, S.C., 2002. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere, 48, 437-444. Konstantinou, I.K., Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49, 1-14. Kung, H.H., Ko, E.I., 1996. Preparation of oxide catalysts and catalyst supports - A review of recent advances. The Chemical Engineering Journal and the Biochemical Engineering Journal, 64, 203-214. Lathasree, S., Rao, A.N., SivaSankar, B., Sadasivam, V., Rengaraj, K., 2004. Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Journal of Molecular Catalysis A: Chemical, 223, 101-105. Lee, J., Gouma, P.I. 2012. Sol-gel processed oxide photocatalysts, Springer US, 217-237. Linsebigler, A.L., 1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95, 735. Liu, B., Wen, L., Zhao, X., 2008. The structure and photocatalytic studies of N-doped TiO2 films prepared by radio frequency reactive magnetron sputtering. Solar Energy Materials and Solar Cells, 92, 1-10. Liu, Z., Guo, B., Hong, L., Jiang, H., 2005. Preparation and characterization of cerium oxide doped TiO2 nanoparticles. Journal of Physics and Chemistry of Solids, 66, 161-167. Long, R., English, N.J., 2011. Electronic structure of cation-codoped TiO2 for visible-light photocatalyst applications from hybrid density functional theory calculations. Applied Physics Letters, 98, 142103-142103-3. Luo, Y., Liu, J., Xia, X., Li, X., Fang, T., Li, S., Ren, Q., Li, J., Jia, Z., 2007. Fabrication and characterization of TiO2/short MWNTs with enhanced photocatalytic activity. Materials Letters, 61, 2467-2472. Ma, P., Yan, G., Qian, J., Zhang, M., Yang, J., 2011. Preparation of novel N-TiO2 by a solid-state method and its photocatalytic activity. Chinese Journal of Catalysis, 32, 1430-1435. Mei, L., Liang, K., Wang, H.e., 2007. N-doping TiO2 thin film prepared by heat treatment in electric field. Catalysis Communications, 8, 1187-1190. Miwa, T., Kaneco, S., Katsumata, H., Suzuki, T., Ohta, K., Chand Verma, S., Sugihara, K., 2010. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 35, 6554-6560. Nada, A.A., Barakat, M.H., Hamed, H.A., Mohamed, N.R., Veziroglu, T.N., 2005. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. International Journal of Hydrogen Energy, 30, 687-691. Naik, B., Martha, S., Parida, K.M., 2011. Facile fabrication of Bi2O3/TiO2-xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 36, 2794-2802. Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., Murugesan, V., 2002. Solar/UV-induced photocatalytic degradation of three commercial textile dyes. Journal of Hazardous Materials, 89, 303-317. Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, K., 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11, 401-425. Ohtani, B., Iwai, K., Nishimoto, S.-i., Sato, S., 1997. Role of platinum deposits on titanium(IV) oxide particles: structural and kinetic analyses of photocatalytic reaction in aqueous alcohol and amino acid solutions. The Journal of Physical Chemistry B, 101, 3349-3359. Ou, Y., Lin, J., Fang, S., Liao, D., 2006. MWNT-TiO2:Ni composite catalyst: A new class of catalyst for photocatalytic H2 evolution from water under visible light illumination. Chemical Physics Letters, 429, 199-203. Pal, U., Ghosh, S., Chatterjee, D., 2012. Effect of sacrificial electron donors on hydrogen generation over visible light–irradiated nonmetal-doped TiO2 photocatalysts Transition Metal Chemistry, 37, 93-96. Pichat, P., Mozzanega, M.N., Disdier, J., Herrmann, J.M., 1982. Pt content and temperature effects on the photocatalytic H2 production from aliphatic alcohols over Pt/TiO2. New Journal of Chemistry559-564. Pillai, S.C., Periyat, P., George, R., McCormack, D.E., Seery, M.K., Hayden, H., Colreavy, J., Corr, D., Hinder, S.J., 2007. Synthesis of high-temperature stable anatase TiO2 photocatalyst, The Journal of Physical Chemistry C, 111, 1605-1611. Qamar, M., Muneer, M., 2005. Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 120, 219-227. Qin, H.-L., Gu, G.-B., Liu, S., 2008. Preparation of nitrogen-doped titania with visible-light activity and its application. Comptes Rendus Chimie, 11, 95-100. Rane, K.S., Mhalsiker, R., Yin, S., Sato, T., Cho, K., Dunbar, E., Biswas, P., 2006. Visible light-sensitive yellow TiO2-xNx and Fe-N co-doped Ti1-yFeyO2-xNx anatase photocatalysts. Journal of Solid State Chemistry, 179, 3033-3044. Sakthivel, S., Shankar, M.V., Palanichamy, M., Arabindoo, B., Bahnemann, D.W., Murugesan, V., 2004. Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38, 3001-3008. Sakulkhaemaruethai, S., Sreethawong, T., 2011. Synthesis of mesoporous-assembled TiO2 nanocrystals by a modified urea-aided sol-gel process and their outstanding photocatalytic H2 production activity. International Journal of Hydrogen Energy, 36, 6553-6559. Sang, L.X., Zhong, S.H., Ma, C.F., 2007. The study on DRS and Raman spectroscopy of surface modified TiO2/SiO2. Spectroscopy and Spectral Analysis, 27, 720-724. Sathish, M., Viswanathan, B., Viswanath, R.P., 2007. Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex. Applied Catalysis B: Environmental, 74, 307-312. Sathish, M., Viswanathan, B., Viswanath, R.P., Gopinath, C.S., 2005. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chemistry of Materials, 17, 6349-6353. Sato, S., 1986. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chemical Physics Letters, 123, 126-128. Serp, P., Corrias, M., Kalck, P., 2003. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253, 337-358. Serpone, N., 2006. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? The Journal of Physical Chemistry B, 110, 24287-24293. Siemon, U., Bahnemann, D., Testa, J.J., Rodrı́guez, D., Litter, M.I., Bruno, N., 2002. Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 148, 247-255. Sivaranjani, K., Gopinath, C.S., 2011. Porosity driven photocatalytic activity of wormhole mesoporous TiO2-xNx in direct sunlight. Journal of Materials Chemistry, 21, 2639-2647. Sreethawong, T., Laehsalee, S., Chavadej, S., 2008. Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation. International Journal of Hydrogen Energy, 33, 5947-5957. Sreethawong, T., Laehsalee, S., Chavadej, S., 2009. Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation. Catalysis Communications, 10, 538-543. Sreethawong, T., Puangpetch, T., Chavadej, S., Yoshikawa, S., 2007. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Journal of Power Sources, 165, 861-869. Sreethawong, T., Yoshikawa, S., 2005. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catalysis Communications, 6, 661-668. Stumm, W. 1992. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in natural systems. John Wiley Sons. Su, C., Hong, B.Y., Tseng, C.M., 2004. Sol–gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 96, 119-126. Sun, H., Ullah, R., Chong, S., Ang, H.M., Tade, M.O., Wang, S., 2011. Room-light-induced indoor air purification using an efficient Pt/N-TiO2 photocatalyst. Applied Catalysis B-Environmental, 108, 127-133. Suresh, C., Biju, V., Mukundan, P., Warrier, K.G.K., 1998. Anatase to rutile transformation in sol-gel titania by modification of precursor. Polyhedron, 17, 3131-3135. Teoh, W.Y., Madler, L., Beydoun, D., Pratsinis, S.E., Amal, R., 2005. Direct (one-step) synthesis of TiO2 and Pt/TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chemical Engineering Science, 60, 5852-5861. Wang, C.-C., Ying, J.Y., 1999. Sol-Gel Synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chemistry of Materials, 11, 3113. Wang, D.-H., Wang, L., Xu, A.-W., 2012. Room-temperature synthesis of Zn0.80Cd0.20S solid solution with a high visible-light photocatalytic activity for hydrogen evolution. Nanoscale, 4, 2046-2053. Wang, L., Wang, W., 2012. In-situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution. CrystEngComm, 14, 3315-3320. Wang, W., Serp, P., Kalck, P., Faria, J.L., 2005a. Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method. Applied Catalysis B: Environmental, 56, 305-312. Wang, W., Serp, P., Kalck, P., Faria, J.L., 2005b. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis A: Chemical, 235, 194-199. Wang, W., Serp, P., Kalck, P., Silva, C.G., Faria, J.L., 2007a. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Materials Research Bulletin, 43, 958-967. Wang, Y., Cheng, H., Hao, Y., Ma, J., Li, W., Cai, S., 1999. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes. Thin Solid Films, 349, 120-125. Wang, Y.Q., Yu, X.J., Sun, D.Z., 2007b. Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst. Journal of Hazardous Materials, 144, 328-333. Wang, Z., Hu, X., 1999. Fabrication and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films, 352, 62-65. Wu, J.-F., Hung, C.-H., Yuan, C.-S., 2005. Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology A: Chemistry, 170, 299-306. Xu, Y., Langford, C.H., 2000. Variation of Langmuir adsorption constant determined for TiO2-photocatalyzed degradation of acetophenone under different light intensity. Journal of Photochemistry and Photobiology A: Chemistry, 133, 67-71. Xu, Y., Schoonen, M.A.A., 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85, 543-556. Yang, X., Salzmann, C., Shi, H., Wang, H., Green, M.L.H., Xiao, T., 2008. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. The Journal of Physical Chemistry A, 112, 10784-10789. Yang, Y.Z., Chang, C.H., Idriss, H., 2006. Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Applied Catalysis B: Environmental, 67, 217-222. Yao, W., Huang, C., Muradov, N., T-Raissi, A., 2011. A novel Pd–Cr2O3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor. International Journal of Hydrogen Energy, 36, 4710-4715. Yi, H., Peng, T., Ke, D., Ke, D., Zan, L., Yan, C., 2008. Photocatalytic H2 production from methanol aqueous solution over titania nanoparticles with mesostructures. International Journal of Hydrogen Energy, 33, 672-678. Yin, S., Aita, Y., Komatsu, M., Sato, T., 2006a. Visible-light-induced photocatalytic activity of TiO2-xNy prepared by solvothermal process in urea-alcohol system. Journal of the European Ceramic Society, 26, 2735-2742. Yin, S., Ihara, K., Aita, Y., Komatsu, M., Sato, T., 2006b. Visible-light induced photocatalytic activity of TiO2-xAy (A = N, S) prepared by precipitation route. Journal of Photochemistry and Photobiology A: Chemistry, 179, 105-114. Yin, S., Zhang, Q., Saito, F., Sato, T., 2003. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chemistry Letters, 32, 358-359. Yoong, L.S., Chong, F.K., Dutta, B.K., 2009. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy, 34, 1652-1661. Yu, H., Ouyang, S., Yan, S., Li, Z., Yu, T., Zou, Z., 2011. Sol-gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO3 for efficient hydrogen production. Journal of Materials Chemistry, 21, 11347-11351. Yu, H., Zhang, K., Rossi, C., 2007. Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 188, 65-73. Yu, J.-G., Yu, H.-G., Cheng, B., Zhao, X.-J., Yu, J.C., Ho, W.-K., 2003. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. The Journal of Physical Chemistry B, 107, 13871-13879. Zhang, J., Bang, J.H., Tang, C., Kamat, P.V., 2010a. Tailored TiO2−SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano, 4, 387-395. Zhang, J., Wang, Y., Jin, Z., Wu, Z., Zhang, Z., 2008. Visible-light photocatalytic behavior of two different N-doped TiO2. Applied Surface Science, 254, 4462-4466. Zhang, M.L., Li, L.F., Meng, X.D., 2011. A simple new way to prepare Cu-doped nano-TiO2 with visible light photocatalytic activity. Advanced Materials Research, 197 - 198, 1028-1031. Zhang, X., Huo, K., Hu, L., Wu, Z., Chu, P.K., 2010b. Synthesis and photocatalytic activity of highly ordered TiO2 and SrTiO3/TiO2 nanotube arrays on Ti substrates. Journal of the American Ceramic Society, 93, 2771-2778. Zhao, Y., Qiu, X., Burda, C., 2008. The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles. Chemistry of Materials, 20, 2629-2636. Zheng, H., Cui, Y., Zhang, J., Ding, Z., Wang, X., 2011. Influence of Pt promoter on the visible light photocatalytic properties of N-doped TiO2. Chinese Journal of Catalysis, 32, 100-105. Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M., 2006. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. Journal of Photochemistry and Photobiology A: Chemistry, 180, 196-204. Zou, J.-J., He, H., Cui, L., Du, H.-Y., 2007. Highly efficient Pt/TiO2 photocatalyst for hydrogen generation prepared by a cold plasma method. International Journal of Hydrogen Energy, 32, 1762-1770. 曲新生, 陳發林, 呂錫民. 2007. 產氫與儲氫技術. 五南圖書出版社股份有限公司. 朱昱璋, 楊思明. 2006. 二氧化鈦奈米管擔載金、鉑觸媒進行紫外光甲醇重組產氫反應. 國立中央大學化學工程與材料工程研究所. 碩士論文. 吳政峰. 2005. 溫度與溼度效應對光催化分解氣相揮發性有機物之影響. 國立中山大學,博士論文. 呂宗昕、吳偉宏. 2004. 奈米科技與二氧化鈦光觸媒. 科學發展. 巫菁芳, 林家欣, 白曛綾. 2007. 奈米二氧化鈦覆載於銀擔體之複合物光觸媒對丙酮去除處理之研究. 國立交通大學環境工程系所. 碩士論文. 李仲康, 黃啓祥. 2007. 可見光光觸媒InVO4之合成與水分解性質研究. 國立成功大學材料科學及工程研究所. 碩士論文. 李俊賢, 周更生. 2004. 負載銀二氧化鈦光觸媒分散及其光催化反應之研究. 國立清華大學化學工程研究所. 碩士論文. 李聖文, 王奕凱. 2006. 以碳、氮摻雜法改質光觸媒及其催化活性研究. 國立清華大學化學工程研究所. 碩士論文. 杜修豪, 柯學初. 2009. 以溶膠凝膠法製備氮氟共同摻雜二氧化鈦奈米可見光光觸媒之特性研究. 國立東華大學應用物理研究所. 碩士論文. 林嘉男, 顧洋. 2009. 溶膠凝膠法合成NiO/TiO2之 p-n接面光觸媒之研究. 國立臺灣科技大學化學工程研究所. 碩士論文. 洪珩婕, 吳仁彰. 2010. 以氮改質的鉑二氧化鈦於可見光下分解水製氫之研究. 靜宜大學應用化學研究所. 碩士論文. 徐敏容, 朱信. 2008. 以Sr、Cr改質TiO2光觸媒處理1,2-二氯乙烷之研究. 國立成功大學環境工程研究所. 碩士論文. 馬志明, 顧洋. 2007. 紫外線/光觸媒程序處理氣相揮發性有機物反應行為之研究. 國立臺灣科技大學化學工程研究所. 博士論文. 馬振基. 2005. 奈米材料科技原理與應用. 全華科技圖書股份有限公司. 國際能源總署. 2007. Hydrogen Production & Distribution. 張碩修, 魏玉麟. 2008. 具可見光吸收之銅、鉻、鐵改質型TiO2奈米光觸媒. 東海大學環境科學與工程研究所. 碩士論文. 郭皇麟, 林秋薰. 2007. 含硫酸根的二氧化鈦(銳鈦礦)奈米管的合成及其利用乙醇產生氫氣之光催化反應. 國立彰化師範大學化學研究所. 碩士論文. 陳定翔, 鄭玉龍. 2007. 氫能源經濟之探討. 資源與環境學術研討會162-168. 陳俊吉, 鄧熙聖. 2005. 金屬氧化物半導體在可見光分解水製氫之研究. 國立成功大學化學工程研究所. 碩士論文. 陳建志, 白曛綾. 2007. 以常壓電漿輔助程序製造氮摻雜二氧化鈦可見光觸媒奈米微粒之研究. 國立交通大學環境工程研究所. 博士論文. 陳禹鈞, 張鼎張. 2005. 以Fe、V改質光觸媒觸理1,2-二氯乙烷之研究. 國立成功大學環境工程研究所. 碩士論文. 陳婉君, 顧洋. 2008. 以熱沉積法摻雜氮在二氧化鈦之特性與光催化研究. 國立臺灣科技大學化學工程研究所. 碩士論文. 傅泀翰, 朱信. 2004. 以改質光觸媒處理二氯甲烷之研究. 國立成功大學環境工程研究所. 碩士論文. 曾堯宣. 2004. 奈米光觸媒作用原理與其應用範圍. 工研院環安中心. 曾焜煜, 顧洋. 2003. 以紫外線/光觸媒程序處理氣相丙酮反應行為之研究. 國立台灣科技大學化學工程研究所. 碩士論文. 曾琳雅, 翁鴻山. 2006. 銀-鉭系波洛斯凱特型光觸媒用於水分解製氫之效能. 國立成功大學化學工程研究所. 碩士論文. 黃英豪, 顧洋. 2009. 製備氧化鋅/二氧化鈦複合型光觸媒進行水溶液中光催化氧化還原反應之研究. 國立臺灣科技大學化學工程系. 碩士論文. 黃繹倫, 楊文都. 2007. 兩微乳膠技術製備奈米Pt/TiO2-xNx微粉應用於甲醇/水裂解產氫之研究. 國立高雄應用科技大學化學工程研究所. 碩士論文. 經濟部能源局. 2010. 2010年能源產業技術白皮書. 劉仰哲, 朱信. 2006. 以Sr、Cu改質TiO2光觸媒處理廚餘堆肥場中 臭味氣體三甲基胺之研究. 國立成功大學環境工程研究所. 碩士論文. 劉醇炫, 林秋薰. 2007. 一種以單斜晶形的二氧化鈦為載體的鉑觸媒的製備及其在乙醇光催化脫氫反應的應用研究. 國立彰化師範大學化學研究所. 碩士論文. 蔡宗憲, 柯學初. 2010. 奈米二氧化鈦摻雜硼之可見光光觸媒之特性研究. 國立東華大學應用物理研究所. 碩士論文. 鄭千芳, 楊肇政. 2005. 以溶膠凝膠法製備複合奈米Ag/TiO2光觸媒之研究. 國立雲林科技大學化學工程研究所. 碩士論文. 橋本和仁, 藤嶋昭. 2006. 圖解光觸媒. 全華科技圖書股份有限公司. 蕭德福, 袁中新. 2000. 以改質之TiO2光觸媒探討四率乙烯分解率及礦化率之影響. 國立中山大學環境工程研究所. 碩士論文. 閻子峰. 2004. 奈米催化技術. 五南圖書出版社股份有限公司.
為了延緩電子-電洞對之再結合速率, Pt/TiO2光觸媒被合成並探討氧化/還原處理對觸媒特性及產氫速率之影響。研究結果顯示其產氫速率以氧化處理之光觸媒較還原處理具有更佳之成效。還原處理之光觸媒,其Pt型態為金屬態Pt(0),此造成TiO2晶相更容易由銳鈦礦轉為金紅石型態,導致其比表面積低於氧化處理之光觸媒。綜合化學型態及光學分析研究,結果發現PtO/TiO2比Pt(0)/TiO2具有更大的能階,且氧化處理之PtO/TiO2光觸媒具備Pt均勻分佈、較低之晶相轉移比例、高比表面積之特性,因此可以有效地提升光催化產氫速率。
為了提升光觸媒之光能吸收範圍及增加活性基位,本研究探討鍛燒溫度對Pt/N-doped TiO2觸媒之特性及產氫速率的影響。結果顯示鍛燒溫度強烈地影響Pt/N-doped TiO2的結構、型態、氮摻雜量、比表面積、晶相及光能吸收率。除此之外,鍛燒溫度亦強烈地影響N-doped TiO2的孔洞尺寸。在鍛燒溫度為400 oC時,等溫吸脫附曲線顯示該觸媒為中孔洞型態。經由場發射-穿透式電子顯微鏡分析指出中孔洞的N-doped TiO2為顆粒組成的網狀結構。然而,在高的鍛燒溫度,使得N-doped TiO2的氮摻雜效果變差,進而導致其可見光吸收範圍降低。本研究藉由改變鍛燒環境,在不影響N-doped TiO2之孔洞結構、觸媒晶相、化學組態的情況下,可以有效地改良N-doped TiO2之光學性質,因此具有較佳的可見光吸收範圍並使得太陽能水解產氫之速率提升。
為了更進一步提升光催化產氫速率,設計Pt/TiO2-XNx/SrTiO3三接面複合材料以同時提升太陽能利用率及光催化活性。首先藉由溶膠凝膠法將N-doped TiO2長成於SrTiO3並探討SrTiO3與N-doped TiO2的關係與影響。由X光射線繞射儀和X光射線光電子能譜儀結果證實N-doped TiO2成功地被製造並與SrTiO3結合。當N-doped TiO2長成於SrTiO3可避免顆粒團聚,因此不同比例的複合半導體之比表面積分析,其結果皆大於理論值。此外,SrTiO3與N-doped TiO2結合,可提升其可見光吸收範圍。產氫結果顯示SrTiO3與N-doped TiO2結合可有效地提升產氫速率,被歸因於此複合半導體可避免顆粒聚集及使得電子-電洞分離並轉移至表面。製備完成的TiO2-xNx/SrTiO3複合半導體進一步經由光沉積法將Pt披覆於複合半導體以形成Pt/TiO2-xNx/SrTiO3三接面複合材料,其產氫速率於模擬太陽光下可更進一步被提升。根據SrTiO3、N-doped TiO2及Pt能階位置,產氫速率提升之原因可被歸因於光激發產生的電子與電洞對能由複合材料內層轉移至外層,因此促進氧化還原反應並延緩再結合速率,其研究結果顯示Pt/TiO2-xNx/SrTiO3三接面光觸媒能有效地於模擬太陽光下進行光解水產氫,其產氫速率約為1733 μmolg-1h-1。

As natural resources are rapidly exhausted, renewable energy sources show promise as alternative resources. Photocatalytic hydrogen (H2) production, one of attractive green technologies, uses solar energy and water as material source. In addition, the technology produces very few pollutants during photocatalysis. Therefore, photocatalytic H2 production via photocatalysts has great potential for solving environmental and energy issues. To enhance H2 production from solar light induced water splitting, it is necessary to increase the efficiency of photocatalysis and the light adsorption range of photocatalyst.
In order to increase the efficiency of photocatalytic H2 production, the influence of the following operational parameters, namely initial sacrificial reagent concentration, reaction temperature, photocatalyst concentration, initial solution pH, and irradiation time, was the main focus. The hydrogen evolution was experimentally found to be strongly affected by the above parameters. The optimum values of initial solution pH, photocatalyst concentration, and sacrificial reagent concentration were obtained. The results showed that the utilization of the photocatalyst with the proper operational conditions could lead to considerably high efficiency of photocatalytic hydrogen production.
To reduce the recombination rate of e-/h+ pairs, oxidation /reduction-treated Pt/TiO2 photocatalysts were synthesized and the influences of redox-treated Pt/TiO2 photocatalysts on H2 production were investigated. In terms of H2 production rate, the oxidation treatment showed higher reactivity than the reduction treatment. The reduction treatment allowed the formation of metallic Pt(0), which more easily catalyzed the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts had lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of X-ray photoelectron spectroscopy (XPS) and optical analyses, PtO/TiO2 showed a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 was more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts could significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.
To enhance the light adsorption range and the reactive sites of photocatalyst, the effects of calcination temperature on the properties and H2 production ability of nitrogen-doped (N-doped) TiO2 photodeposited with 0.2 wt% Pt (platinum) were studied. The results showed that the calcination temperature of Pt/Ndoped TiO2 obviously affected the structure, morphology and N atomic content, resulting in different TiO2 phases, SBET values, and visible light absorption abilities.
Besides, the SBET results indicated the pore size of N-doped TiO2 photocatalyst was significantly affected by calcination temperature. When the N-doped TiO2 calcined at 400 oC, the adsorption hysteresis of the isotherm was close to the Type H4. Field-emission-transmission electron microscopy analysis (FE-TEM) showed the mesoporous structure was composed of nanoparticles. However, high clacination temperature resulted in less visible light absorption region of the N-doped TiO2. In this study, the effect of calcination atmosphere on the properties of N-doped TiO2 was discussed. The results showed that the visible light absorption region of the N-doped TiO2 was significantly improved by calcination atmosphere (N2 and NH3 atmospheres). Moreover, the pore size, crystalline phase, and chemical state were not changed under this calcination condition. Therefore, the H2 production of modified N-doped TiO2 raised effitiency three times than no modified one.
To further increase solar light induced H2 production rate, the Pt/TiO2-xNx/SrTiO3 triplejunction was designed. First, N-doped TiO2 was grown on the surface of the SrTiO3 via sol-gel process and the effect of SrTiO3 on the heterojunction was studied by various ratios of SrTiO3/N-doped TiO2. The results of X-ray diffraction (XRD) and XPS analyses showed that the N-doped TiO2 was successfully fabricated and then combined with SrTiO3. N-doped TiO2 coupled with SrTiO3 prevented particle agglomeration and thus the heterojunction materials had higher specific surface areas than the theoretical values. In addition, SrTiO3 coupled with N-doped TiO2 enhanced the visible light absorption range. The photocatalytic H2 production rates of the heterojunction were significantly increased, especially at 5%, which could be ascribed to the enhancement of e-/h+ separation, charge migration from the photocatalyst interior to the surface, and the prevention of particle agglomeration. Then, the triplejunction was prepared by coating Pt on the TiO2-xNx/SrTiO3. The solar light induced H2 production rate was much enhanced by the triplejunction. Based on the energy levels of SrTiO3, N-doped TiO2, and Pt, it was deduced that the photogenerated charges of the triplejunction migrates from the interior of the material to the surface, thus promoting the redox reaction and reducing the e-/h+ recombination rate. Therefore, the triplejuncion effectively split H2O to produce H2 under solar light irradiation.
其他識別: U0005-0108201212280200
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.