Please use this identifier to cite or link to this item:
標題: Tween-80對電動力法技術復育受三氯乙烯污染土壤之探討
Enhanced Recovery of Trichloroethylene from Soil by Tween-80 Surfactant Added in the Electrolyte of Electrokinetic Approach
作者: 葉孟翰
Yeh, Meng-Han
關鍵字: 三氯乙烯;Trichloroethylene;聚氧乙烯(20)山梨醇單油酸酯;電動力法復育;微胞;polyoxyethylene(20) sorbitan monooleate;Electrokinetic remediation;Micelle
出版社: 環境工程學系所
引用: 參考文獻 英文文獻 1. Acar, Y. B. and Alshawabkeh, A. N. (1993). Principles of electrokinetic remediation. Environment Science & Technology, Vol. 27, No. 13, pp. 2638-2647. 2. Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., Marks, R. E., Puppala, S., Bricka, M. and Parker, R. (1995). Electrokinetic remediation: basics and technology status, Journal of Hazardous Materials, Vol. 40, pp. 117-137. 3. Angela, L. (2000). Effect of non ionic surfactants on dissolution of polycyclic aromatic hydrocarbons from coal tar. Practical Periodical Hazardous Toxic Radioactive Waste Management, Vol. 4, pp. 78-81. 4. Alcantara, M. T., Gomez, J., Pazos, M., Sanroman, M. A. (2010). Electrokinetic remediation of PAH mixtures from kaolin. Journal of Hazardous Materials, Vol. 179, pp. 1156-1160. 5. Baek, K., Kim, D. H., Park, S. W., Ryu, B. G., Batjargal, T. and Yang, J. S. (2009). Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, Vol. 161, pp. 457–462. 6. Baraud, F., Tellier, S. and Astruc, M. (1999). Temperature effect on ionic transport during soil electrokinetic treatment at constant pH. Journal of Hazardous Materials, Vol. 64, pp. 263-281. 7. Bruce, J. B., Chen, H., Zhang, W. and John C. W. (1997). Sorption of nonionic surfactants on sediment materials. Environmental Science and Technology, Vol. 31, pp. 1735-1741. 8. Bruell, C. J., Segall, B. A. and Walsh, M. T. (1992). Electroosmotic removal gasoline hydrocarbons and TCE from clay. ASCE Journal of Environmental Engineering, Vol. 108, pp. 68–83. 9. Chang, J. H., Qiang, Z., Huang, C. P. and Cha, D. (2000). Electroosmotic flow rate:asemiempirical approach. Chapter 15 in Nuclear Site Remediation: First Accomplishments of the Environmental Management Science Program, ACS Symposium Series, Vol. 778, pp. 247-266. 10. Choy, W. K. and Chu, W. (2001). The modelling of trichloroethene photodegradation in Brij 35 surfactant by two-stage reaction. Chemosphere, Vol. 44, pp. 211–215. 11. Chung, H. I. and Kang, B. H. (1999). Lead removal from contaminated marine clay by electrokinetic soil decontamination. Engineering Geology, Vol. 53, pp. 139-150 12. Edwards, D. A., Adeel, Z., and Luthy, R. G. (1994). Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science and Technology, Vol. 28 , No. 8, pp. 1550–1560. 13. Fountain, J. C. (1998). Technology for dense nonaqueous phase liquid source zone remediation. Technology Evaluation Report TE 98-02 Ground-Water Remediation Technologies Analysis Center. 14. Giannis, A., Nikolaou, A., Pentari, D. and Gidarakos, E. (2009). Chelating agent- assisted electrokinetic removal of cadmium, lead and copper from contaminated soils. Environmental Pollution, Vol. 157, pp. 3379-3386. 15. Grathwohl, P. and Teutsch, G. (1997). In-situ remediation of persistant organic contaminants in groundwater. International Conference On Groundwater Quality Protection, pp. 85-99. 16. Hamed, J., Acar, Y. B. and Gale, R. J. (1991). Pb(II) removal from Kaolinite by electrokinetics. Journal of Geotechnical Engineering, Vol. 117, pp. 241-271. 17. Hamed, J. T. and Bhadra, A. (1997). Influence of current density and pH on electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 279-294. 18. Haran , B. S., Popov, B. N., Zheng, G. and White, R. E. (1996). Development of a new electrokinetic technique for decontamination of hexavalent chromium from low surface charged soils. Environmental Progress, Vol. 15, pp. 166-172. 19. Ho, V. S. (1999). The Lasagna technology for in-situ soil remediation:1. Small field test. Environmental Science and Technology, Vol. 33, pp. 1086-1091. 20. Karagunduz, A., Gezer, A. and Karasuloglu, G. (2007). Surfactant enhanced electrokinetic remediation of DDT from soils. Science of The Total Environment, Vol. 385, pp. 1-11. 21. Kim, S. O., Moon, S. O., Kim, K. W. and Yun, S.T. (2002). Pilot scale on the exsite electrokinetic removal of heavy metal from municipal wastewater sludge. Water Research, Vol. 36, pp. 4765-4774. 22. Kim, D. H., Jeon, C. S., Baek, K., Ko, S. H. and Yang,J. S. (2009). Electrokinetic remediation of fluorine-contaminated soil:Conditioning of anolyte. Journal of Hazardous Materials, Vol. 161, pp. 565-569. 23. Kim, D. H., Ryu, B. G., Park, S. W., Seo, C. and Baek, K. (2009). Electrokinetic remediation of Zn and Ni-contaminated soil. Journal of Hazardous Materials, Vol. 165, pp. 501-505. 24. Kim, K. J., Kim, D. H., Yoo, J. C. and Baek, K. (2011). Electrokinetic extraction of heavy metals from dredged marine sediment. Separation and Purification Technology , Vol.79, pp. 164–169 25. Ko, S. O., Schlautman, M. A. and Carraway, E. R. (1998). Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environmental Science and Technology, Vol. 32, pp 3542-3548 26. Ko, S. O., Schlautman, M. A. and Carraway, E. R. (2000). Cyclodextrinenhanced electrokinetic removal of phenanthrene from a model clay soil. Environmental Science and Technology, Vol.34, pp.1535–1541. 27. Krauss, H., Zorn, R., Haus, R. and Czurda, K. (2001). Electroosmotic transport in fine grained sediments with respect to pore throats. Proceedings EREM 2001 3rd Symposium and Status Report on Electrokinetic Remediation. Published by AGK University of Karlsruhe,Chapter 31, pp. 3-12. 28. Larry, C. M. and Chen, J. L. (1997). Effects of conductive fractures during in-situ electroosmosis. Journal of Hazardous Materials, Vol. 55, pp. 239-262. 29. Leinz, R. W., Hoover, D. B. and Meier, A. L. (1998). NEOCHIN: An electrochemical method for environmental application. Journal of Geochemical Exploration, Vol. 64, pp. 421-434. 30. Ma, J. W., Wang, F. Y., Huang, Z. H. and Wang, H. (2010). Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. Journal of Hazardous Meterials, Vol. 176, pp. 715-720. 31. Nyer, E. K., Fam, S., Kidd, D. F., Palmcr, P. L., Bocttcheer, G., Crossman, T. L. and Suthersan, S.S. (1996). In-situ treatment. CRC Press Inc., Boca Raton, Florida, pp. 310-314. 32. Oonnittan, A., Shrestha, R. A. and Sillanpaa, M. (2009). Effect of cyclodextrin on the remediation of hexachlorobenzene in soil by electrokinetic Fenton process. Separation and Purification Technology, Vol 64, pp. 314-320. 33. Pamukcu, S. and Wittle, J. K. (1992). Electrokinetic removal of selected heavy metals from soil. Environmental Progress, Vol. 11, pp. 241-250. 34. Park, J. Y., Lee, H. H., Kim, S. J., Lee, Y. J. and Yang, J. W. (2007). Surfactant- enhanced electrokinetic removal of phenanthrene from kaolinite. Journal of Hazardous Materials, Vol. 140, pp. 230-236. 35. Pazos, M., Sanroman, M.A. and Cameselle, C. (2006). Improvement in electrokinetic remediation of heavy metal spiked kaolin with the polarity exchange technique. Chemosphere, Vol. 62, pp. 817-822. 36. Peng, G. and Tian, G. (2010). Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge. Chemical Engineering Journal, Vol. 165, pp. 388-394. 37. Peng, G.,Tian, G., Liu, J., Bao, Q. and Zang, L. (2011). Removal of heavy metals from sewage sludge with a combination of bioleaching and electrokinetic remediation technology. Desalination, Vol. 271, pp. 100–104. 38. Polcaro, A. M., Vacca, A., Mascia, M. and Palmas, S. (2007). Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. Journal of Hazardous Materials, Vol. 148, pp. 505-512. 39. Puppala, K. S., Alshawabkeh, A. N., Acar, Y. B., Gale, R. J. and Bricka, M. (1997). enhanced electrokinetic remediation of high sorption capacity soil. Journal of Hazardous Meterials, Vol. 55, pp. 221-237. 40. Reddy, K. R., Parupudi, U. S., Devulapalli, S. N. and Xu, Y. C. (1997). Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials, Vol. 55, pp. 135-158. 41. Reddy, K. R., Xu, C. Y. and Chinthamreddy, S. (2001). Assessment of electrokinetic removal of heavy metals from soil by sequential extraction analysis. Journal of Hazardous Materials, Vol. 84, pp. 279-296. 42. Rosen, M. J. (1989). Surfactant and Interfacial Phenomena. 2nd ed. New York, NY : John Wiley and Sons, Inc. 43. Ryu, B. G., Park, G. Y., Yang, J.W. and Baek, K. (2010). Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb -contaminated soil. Separation and Purification Technology, pp. 1-25. 44. Ryu, B. G., Yang, D. H., Kim, K. and Baek, K. (2010). Pulsed electrokinetic removal of Cd and Zn from find-grained soil. Journal of Applied Electrochemistry, Vol. 40, pp. 1039-1047. 45. Saichek, R. E. and Reddy, K. R. (2003). Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, Vol. 51, pp. 273-287. 46. Sabatini, D. A., Konx, R. C., Harwell, J. H. and Wu, B. (2000). Integrated design of surfactant enhanced DNAPL remediation: efficient supersolubilization and gradient systems. Journal of Contaminant Hydrology, Vol. 45, pp. 99-121. 47. Schnoor, J. L. (1996). Environmental Modelling Fate and Transport of pollutants in water and air. John Wiley and Sons, Inc. 48. Shen, Z., Chen, X., Jia, J., Qu, L. and Wang, W. (2007). Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution,Vol. 150, pp. 193-199. 49. Spyros, G. P. and Jaglal, K. (1991). Desorptive behavior of trichloroethylene in contaminated soil. Environmental Science and Technology, Vol. 25, pp. 274-279. 50. Traina, G., Morselli, L. and Adorno, G. P. (2007). Electrokinetic remediation of bottom ash from municipal solid waste incinerator. Electrochimica Acta, Vol. 52, pp. 3380-3385. 51. Vane, M. L. and Zang, G. M. (1997). Effect of aqueous phase properties on clay partical zeta potential and Electro-osmotic permeability:implications for electro-kinetic soil remediation processes. Journal of Hazardous Materials, Vol. 55, pp. 1-22. 52. Virkutyte, J., Sillanpaa, M. and Latostenmaa, P. (2002). Electrokinetic soil rediation-critical overview. The Science of the Total Environment, Vol. 289, pp. 97-121. 53. Wang, J. Y., Huang, X. J., Kao, J. C. and Stabnikova, O. (2006). Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology. Journal of Hazardous Materials, Vol. 136, pp. 532–541. 54. Wu, Z., Ye, Q. and Cong, Y. (2005). Electrokinetic behavior of chlorinated phenols in soil and their electrochemical degradation. Process Safety and Environmental Protection, Vol. 83, pp. 178-183. 55. Xu, Q. and Snell, E. D. (1991). Adsorption behavior of alkylarylethoxylated alcohols on silica. Journal of Colloid and Interface Science, Vol. 144, pp. 165-173. 56. Yang, G. C. and Long, Y. W. (1999). Removal and degradation of phenol in a saturated fiow by in-situ electrokinetic remediation and fenton-like process. Journal of Hazardous Materials, Vol. 69, pp. 259-271. 57. Yang, J. W., Lee, Y. J., Park, J. Y., Kim, S. J. and Lee, J. Y. (2005). Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. Engineering Geology, Vol. 77, pp. 243–251. 58. Yeung, A. T. and Mitchell, J. K. (1993). Coupled fluid, electrical and chemical flow in soils. Geotechnique, Vol. 43, No. 1, pp. 121-134. 59. Yin, Y. and Allen, H. E. (1999). In-Situ Chemical Treatment, Technology Evaluation Report TE-99-01. Ground-Water Remediation Technologies Analysis Center. 60. Yuan, S., Tian, M. and Lu, X. (2006). Electrokinetic movement of hexachlorobenzene in clayed soils enhanced by Tween 80 and β-cyclodextrin. Journal of Hazardous Materials, Vol.137, pp. 1218-1225. 61. Zhou, D. M., Deng, C. F., Cang, L. and Alshawabkeh, A. N. (2005). Electrokinetic remediation of a Cu–Zn contaminated red soil by controlling the voltage and conditioning catholyte pH. Chemosphere, Vol. 61, pp. 519-527.   中文文獻 網路資源: 1. 行政院環境保護署環境檢驗所, 2. 行政院環境保護署,毒理資料庫查詢 3. 行政院環境保護署土壤及地下水污染整治基金管理會, 4. 行政院環保署環境檢驗所(2011)。土壤中酸鹼值測定方法。NIEA S410.61C。 5. 行政院環保署環境檢驗所(2011)。土壤水分含量測定方法-重量法。NIEA S280.61C。 6. 行政院環保署環境檢驗所(2011)。土壤陽離子交換容量-醋酸鈉法。NIEA S202.60A。 期刊論文 1. 翁誌煌 (1998)。受有機物污染廠址之物化整治技術研究:電滲透法整治有機污染廠址之研究(第二年)。行政院國科會專題研究計畫成果報告。 2. 劉永章和葛煥彰 (1998)。電動力現象的基本理論。化工,第四十五卷,第二期,第77-83頁。 3. 斯克誠和駱尚廉(2000)。土壤與地下水污染整治政策與其實務。土壤水利,第26卷,第4期,第50-58頁。 4. 洪肇嘉、吳惠銘、紀吉鴻和陳錕榮(1988)。電動力復育鉻、鎘、鉛污染土樣之研究。第十三屆廢棄物處理技術研討會論文集,第312-318頁。 5. 翁誌煌,陳仁慶,林裕雄和周協裕(1998)。電動力法處理酚類污染土壤之可行性研究,第十三屆廢棄物處理技術研討會論文集,第197-204頁。 6. 袁菁、陳威錦和江姿幸(2000)。受苯系有機物污染土壤以電動力界面活性劑系統處理之研究,第十五屆廢棄物處理技術研討會論文集,第2-214~2-221頁。 7. 翁誌煌、涂宏旭和袁菁(2001)。串聯式電動力法復育受三氯乙烯污染黏質土壤之研究,第七屆土壤污染整治研討會論文集,第217~232頁。 8. 蔡在唐、簡全基、邱瑞彬、黃嘉貞、鄭云淳和薩之高(2000)。利用電動力法復育受五氯酚污染之土壤。第十五屆廢棄物處理技術研討會論文集,第2卷,第167~172頁。 9. 袁菁、翁誌煌、陳威錦和江姿幸(2001)。以複合界面活性劑操作流質提升電動力技術處理四氯乙烯污染黏質土壤復育效率之研究。中華民國環境工程學會第十六屆廢棄物處理技術研討會論文集。 10. 薩之高和蔡在唐 (2005)。利用觸媒提升電動力法處理受BTEX污染土壤效率之研究。台灣農業化學與食品科學,第43卷,第4期,第304~312頁。 11. 盧至人(譯者) (1998) Charbeneau, R.J., P.B. Bedient, and R.C. Loehr (著者),地下水的污染整治。國立編譯館。 12. 張尊國(2002)台灣地區土壤污染現況與整治政策分析,91-21,國政分析,財團法人國家政策研究基金會。台北。 13. 王鳳英(1993),界面活性劑的原理與應用,高力圖書有限公司 14. 趙承琛(1994),工業升級之特用化學品-界面活性劑,復文書局 15. 趙承琛(1999),界面科學基礎,復文書局 16. 徐誌宏(1990)。利用界面活性劑脫除地下水含四氯乙烯之研究。屏東科技大學環境工程與科學系,碩士論文。 17. 陳百合(1997)。不同土壤組成對界面活性劑吸附機制之研究。國立中央大學環境工程系,碩士論文。 18. 劉奇岳(1999)。電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土樣之最佳操作條件探討。國立中山大學環境工程學系,碩士論文。 19. 林裕雄(2000)。以電動力法處理受三氯乙烯及單氯酚污染黏質土壤之研究。國立中興大學環境工程系,碩士論文。 20. 莊恭旭(2000)。利用界面活性劑與PAHs分解菌處理廢水中PAHs之研究。國立中山大學海洋環境及工程學系研究所,碩士論文。 21. 王舜屏,(2000)。界面活性劑對土壤/水系統中有機污染物分佈行為之研究,國立中央大學環境工程研究所,碩士論文。 22. 洪昇鵬(2001)。以融合微滴電噴灑游離質譜法消除有機鹽類對蛋白質分析物的干擾。國立中山大學化學系,碩士論文 23. 鄭孟嘉(2001)。以電動力法處理受鎘、鉛污染土壤之研究。國立台灣大學化學工程學系,碩士論文。 24. 林信宏(2002)。水相界面活性劑系統製備貴金屬奈米粒子之研究。成功大學化學工程學系,碩士論文。 25. 蔡在唐(2003)。以電動力法復育受油品污染土壤。國立屏東科技大學環境工程與科學系,碩士論文。 26. 廖盈智,(2003)。循環改良式電動力系統之電化學反應。朝陽科技大學環境工程與管理系,碩士論文。 27. 林世平 (2004)。改良電壓操作方式對電動力處理受污染底泥之影響。國立中興大學環境工程學系,碩士論文。 28. 徐明宏(2004)。界面活性劑對土壤/水系統中有機污染物傳輸特性之影響及其土壤污染整治應用評估。國立中央大學環境工程研究所,博士論文。 29. 林佩君 (2004)。整合零價金屬與電動力法復育有機污染土壤-以四氯乙烯為例。朝陽科技大學環境工程與管理系,碩士論文。 30. 蔡在唐(2008)。利用三階段整治列車系統處理受NAPL污染之土壤及地下水。國立中山大學環境工程研究所,博士論文。 31. 蔡鎮謙(2009)。以氫氧化鈉及醋酸在電動力法中去除土壤中氯酚污染物。國立中興大學環境工程學系,碩士論文。
台灣過去二、三十年以來含氯有機溶劑在工業上被廣泛的使用,三氯乙烯為地下水和土壤中常見有機污染物之ㄧ。三氯乙烯比重大於1且難溶於水,屬於DNAPLs(Dense Nonaqueous-Phase Liquid),一旦處理不當洩漏於水體中,因重力或擴散而往地下水層移動,進而吸附於不飽和層土壤中,造成土壤嚴重污染。電動力法(Electrokinetics, EK)復育技術被美國環保署列為整治地下層DNAPLs 污染黏質土壤場址之可行技術之一。然而對於疏水性有機污染物,由於其水相溶解度較低,因此單獨以電動力技術處理之效果不佳。界面活性劑(surfactant)對於疏水性有機物具有高溶解度特性,本實驗將結合電動力法與界面活性劑之優點來處理受三氯乙烯污染之土壤。
本實驗主要探討界面活性劑於電動力法系統對於移除土壤中三氯乙烯之效能探討,使用非離子型界面活性劑Tween-80作為操作液;其特性為毒性較低、微生物可分解性及達零界微胞濃度(CMC)低。實驗將分成兩部分,添加不同濃度之電解質MgCl2於不同濃度之Tween-80溶液中,對於電動力復育三氯乙烯之效果。實驗結果,對照組單純只以0.005 M MgCl2作為操作液,移除率只有16.8 %;實驗組,在0.005 M MgCl2中添加50 mg/L之Tween-80溶液,移除率可達 36.8 %及在0.05 M MgCl2中添加50 mg/L之Tween-80溶液,移除率可達60.1 %。但將Tween-80濃度提高至100 mg/L,系統對於三氯乙烯的移除效率有所不同。當在0.005 MgCl2濃度電解質下,因100 mg/L之Tween-80對於高嶺土的吸附量會增加,阻塞了孔隙中液體的流動,造成移除率只有15.7 %。當使用0.05 MgCl2濃度電解質下,因為高電流驅使高電滲透流的移動,增加微胞於孔隙中的流動,而移開阻塞在孔隙中的高嶺土,進而將帶有污染物的孔隙水移出土壤,此組實驗的移除率為46.7 %。

The chlorinated organic solvents have been widely used in the industry in Taiwan for over the past two and three decades. Trichloroethylene is among the most ubiquitous chemicals found in groundwater and soil contaminants. Trichloroethylene’s properties is specific gravity greater than 1 and low solubility in water. It is a typical DNAPL(Dense Nonaqueous-Phase Liquid). When it is released into ground, it can be adsorbed in the unsaturated zone and migrated by gravity and diffusion into groundwater, causing subsurface pollution seriously.
Electrokinetic (EK) remediation technology is recognized by the U. S. Environmental Protection Agency as one of the available techniques for remediation subsurface the DNAPLs pollution of clay soil site. For hydrophobic organic compounds is of the low solubility in water, therefore, the electrokinetic remove is not effective. The surface-active agent(surfactant) has the characteristics of high solubility of hydrophobic organic compounds. This study combined the advantages of electrokinetic and surfactant to remove contaminants of TCE from soil.
In this study of adding surfactant in electrolyte to investigate the performance of trichlorethylene in the soil removal, using non-ionic surfactant Tween-80 as the operating fluid; the characteristics of which are low toxic, feasible for microbial decomposition and of low critical micelle concentration (CMC). The experiment will be divided into two parts, which are either different in concentrations of MgCl2 or in concentrations of Tween-80 solutions, for the electrokinetic effect of remediation trichloroethylene from soil.
The results showed that the control group added only 0.005 M MgCl2 as the operating fluid, the removal rate was 16.8 %;Test 2 added 0.005 M MgCl2 in 50 mg/L Tween-80 solution, the removal rate was up to 36.8 % , and Test 3 added 0.05 M MgCl2 in 50 mg/L Tween-80 solution, the removal rate would be up to 60.1 % . When Tween-80 concentration increased to 100 mg/L, the removal efficiency of trichlorethylene is different. When the electrolyte concentration of MgCl2 was 0.005 M, the removal rate of only 15.7 %;the pore fluid could be blocked, because of the increasing adsorption capacity of soil while the concentrations of Tween-80 was 100 mg/L. When 0.05 M MgCl2 was used, the removal rate was 46.7 %;the quantity of electro-osmosis flow and the movement of micelles in the pore increased extremely by high current, leading to the moving of soil particales in the pore;and thus, drived the pore fluid with pollutants out of the soil.
其他識別: U0005-1907201214564500
Appears in Collections:環境工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.