Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5795
標題: UV活化過硫酸鹽降解氫氧化四甲基銨之可行性探討及毒性評估
UV/persulfate oxidation of tetramethylammonium hydroxide and associated acute toxicity
作者: 王麒維
Wang, Chi-Wei
關鍵字: 氫氧化四甲基銨;TMAH;高級氧化程序;紫外光;過硫酸鈉;Advanced oxidation processes;UV;Sodium persulfate
出版社: 環境工程學系所
引用: 1. 黃志彬, 高科技工業廢水處理操作效能提升研析. 高科技工業環保技術及安全衛生研討會 2002. 2. 陳家福, 李展能, 劉保文, 黃良銘, 利用生物降解TFT-LCD製程有機廢水之研究. 中華民國環境工程學會廢水處理技術研討會 2007. 3. 王沁鎮, 陳永煌, 氫氧化四甲銨(TMAH)暴露之現場急救處理評估. 中華職業醫學雜誌 2008, 15, 1-7. 4. 行政院環保署, 水污染防治措施及檢測申報管理辦法. 2012. 5. Latimer, W. M., Oxidation Potentials. Prentice-Hall Englewood Cliffs lnc. 1952. 6. House, D. A., Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 1962, 62, (3), 185-203. 7. Buxton, G. V.; Susan, B.; Sean, M.; Salmon, G. A.; Williams, J. E., The reaction of the SO3.- radical with FeII in acidic aqueous solution-A pulse radiolysis study. Pccp. Phys. Chem. Ch. Ph. 1999, 1, (13), 3111-3115. 8. Liang, C. J.; Clifford, J. B.; Michael, C. M.; Kenneth, L. S., Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 2003, 12, (2), 207-228. 9. Liang, C.; Bruell, C. J.; Marley, M. C.; Sperry, K. L., Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 2004, 55, (9), 1213-1223. 10. Liang, C.; Su, H.-W., Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, (11), 5558-5562. 11. Oh, S.-Y.; Kim, H.-W.; Park, J.-M.; Park, H.-S.; Yoon, C., Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J. Hazard. Mater. 2009, 168, (1), 346-351. 12. Kusic, H.; Peternel, I.; Ukic, S.; Koprivanac, N.; Bolanca, T.; Papic, S.; Bozic, A. L., Modeling of iron activated persulfate oxidation treating reactive azo dye in water matrix. Chem. Eng. J. 2011, 172, (1), 109-121. 13. Xu, X.-R.; Li, X.-Z., Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Sep. Purif. Technol. 2010, 72, (1), 105-111. 14. Robert, L. S.; Michael, A. U.; Olivia, R. W., Principles and practices of in situ chemical oxidation using permanganate. Battelle Press. 2001. 15. 梁振儒, 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 2007, 23, 13-20. 16. FMC-Corporation, Persulfate technical information. http://www.fmcchemicals.com/LinkClick.aspx?fileticket=y_0DZcxPM4w%3D&. 2001. 17. Minisci, F.; Citterio, A.; Giordano, C., Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Accounts of Chem. Res. 1983, 16, (1), 27-32. 18. Behrman, E. J.; Dean, D. H., Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. J. Chromatogr B. Biomed Sci. Appl. 1999, 723, (1-2), 325-6. 19. Huyser, E. S., Free-radical chain reactions. John Wiley & Sons Inc, New York. 1970. 20. Furman, O. S.; Teel, A. L.; Watts, R. J., Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, (16), 6423-6428. 21. Liang, C.; Wang, Z.-S.; Bruell, C. J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66, (1), 106-113. 22. Huang, K.-C.; Richard, A. C.; George, E. H., Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 2002, 49, (4), 413-420. 23. Xu, X.; Ye, Q.; Tang, T.; Wang, D., Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+. J. Hazard. Mater. 2008, 158, (2-3), 410-416. 24. Buxton, G. V.; Malone, T. N.; Salmon, G. A., Reaction of SO4- with Fe2+, Mn2+ and Cu2+ in aqueous solution. J. Chem. Soc. Faraday T. 1997, 93, (16), 2893-2897. 25. Liu, C. S.; Shih, K.; Sun, C. X.; Wang, F., Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Sci. Total. Environ. 2012, 416, (0), 507-512. 26. Liang, C.; Lee, I. L.; Hsu, I. Y.; Liang, C.-P.; Lin, Y.-L., Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere 2008, 70, (3), 426-435. 27. Fordham, J. W. L.; Leverne, W. H., The Persulfate-Iron(II) Initiator System for Free Radical Polymerizations1. J. Am. Chem. Soc. 1951, 73, (10), 4855-4859. 28. Liang, C.; Huang, C.-F.; Mohanty, N.; Lu, C.-J.; Kurakalva, R. M., Hydroxypropyl-β-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Ind. Eng. Chem. Res. 2007, 46, (20), 6466-6479. 29. Gupta, S. S.; Gupta, Y. K., Hydrogen ion dependence of the oxidation of iron(II) with peroxydisulfate in acid perchlorate solutions. Inorg. Chem. 1981, 20, (2), 454-457. 30. Devi, L. G.; Kumar, S. G.; Reddy, K. M., Photo fenton like process Fe3+/(NH4)2S2O8/UV for the degradation of Di azo dye congo red using low iron concentration. Central European Journal of Chemistry 2009, 7, (3), 468-477. 31. Liang, C.; Huang, C.-F.; Chen, Y.-J., Potential for activated persulfate degradation of BTEX contamination. Water Res. 2008, 42, (15), 4091-4100. 32. Pennington, D. E.; Haim, A., Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction. J. Am. Chem. Soc. 1968, 90, (14), 3700-3704. 33. Hayon, E.; Treinin, A.; Wilf, J., Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. J. Am. Chem. Soc. 1972, 94, (1), 47-57. 34. Bao, Z.-C.; John, R. B., Temperature and ionic strength effects on some reactions involving sulfate radical [SO4-(aq)]. J. Phys. Chem.-US 1996, 100, (23), 9780-9787. 35. Goulden, P. D.; Anthony, D. H. J., Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Anal. Chem. 1978, 50, (7), 953-958. 36. Lin, Y.-T.; Liang, C.; Chen, J.-H., Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 2011, 82, (8), 1168-1172. 37. Dogliotti, L.; Hayon, E., Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. J. Phys. Chem. A 1967, 71, (8), 2511-2516. 38. Lin, Y.-T.; Chien, Y.-C.; Liang, C., A laboratory treatability study for pilot-scale soil washing of Cr, Cu, Ni, and Zn contaminated soils. Environmental Progress & Sustainable Energy 2011, 31, (3), 351-360. 39. Fang, J.-Y.; Shang, C., Bromate formation from bromide oxidation by the UV/persulfate process. Environ. Sci. Technol. 2012, 46, (16), 8976-8983. 40. 連雅棉, 紫外光活化過硫酸鹽氧化甲基第三丁基醚之研究. 國立成功大學環境工程學系碩士論文 2009. 41. Huang, Y.-F.; Huang, Y.-H., Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. J. Hazard. Mater. 2009, 162, (2-3), 1211-1216. 42. Criquet, J.; Karpel Vel Leitner, N., Electron beam irradiation of aqueous solution of persulfate ions. Chem. Eng. J. 2011, 169, (1-3), 258-262. 43. Sadik, W. A., Decolourization of an azo dye by heterogeneous photocatalysis. Process Saf. Environ. 2007, 85, (6), 515-520. 44. 經濟部工業局, 半導體業-土壤及地下水污染預防與整治技術手冊. 經濟部工業局污染防治技術手冊 2005. 45. 經濟部工業局, 光電材料及元件製造業-土壤及地下水污染預防與整治技術手冊. 經濟部工業局污染防治技術手冊 2006. 46. 行政院主計總處, 行業分類標準 http://www.dgbas.gov.tw/lp.asp?ctNode=5479&CtUnit=566&BaseDSD=7. 2011. 47. Chang, K.-F.; Yang, S.-Y.; You, H.-S.; Pan, J. R., Anaerobic treatment of tetra-methyl ammonium hydroxide (TMAH) containing wastewater. IEEE T. Semiconduct. M. 2008, 21, (3), 486-491. 48. Den, W.; Ko, F.-S.; Huang, T.-Y., Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation. IEEE T. Semiconduct. M. 2002, 15, (4), 540-551. 49. Chen, T. K.; Ni, C. H.; Chen, J. N., Nitrification-denitrification of opto-electronic industrial wastewater by anoxic/aerobic process. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2003, 38, (10), 2157-67. 50. 吳政龍; 林宏榮; 郭浩然; 蘇世斌, 氫氧化四甲基銨(TMAH)中毒. 中華職業醫學雜誌 2007, 14(2), 67-76. 51. Ohara, M.; Katayama, Y.; Tsuzaki, M.; Nakamoto, S.; Kuraishi, H., Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int. J. Syst. Bacteriol. 1990, 40, (3), 292-6. 52. Urakami, T.; Araki, H.; Oyanagi, H.; Suzuki, K.; Komagata, K., Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int. J. Syst. Bacteriol. 1990, 40, (3), 287-91. 53. Park, S.-J.; Yoon, T.-I.; Bae, J.-H.; Seo, H.-J.; Park, H.-J., Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry 2001, 36, (6), 579-589. 54. Aesar, A., Material Safety Data Sheet of Tetramethylammonium hydroxide, http://www.alfa.com/en/gp100w.pgm?dsstk=L09991. 2013. 55. Sigma-Aldrich, Material Safety Data Sheet of Tetramethylammonium hydroxide, http://www.sigmaaldrich.com/catalog/product/sial/331635?lang=enRion=TW. 2013. 56. 黃筱涵, 以生物處理法降解含TMAH廢水之研究. 國立臺灣大學工學院環境工程學研究所碩士論文 2009. 57. Shibata, J.; Murayama, N.; Matsumot, S., Recovery of tetra-methyl ammonium hydroxide from waste solution by ion exchange resin. Resources Processing 2006, 53, 199-203. 58. 行政院勞工委員會, 特定化學物質危害預防標準. 行政院勞工委員會安全衛生法規 2008. 59. Bronaugh, R. L.; Weingarten, D. P.; Lowe, N. J., Differential rates of percutaneous absorption through the eczematous and normal skin of a monkey. J. Invest. Dermatol. 1986, 87, (4), 451-3. 60. Nielsen, J. B., Percutaneous penetration through slightly damaged skin. Arch. Dermatol. Res. 2005, 296, (12), 560-7. 61. Tsubaki, H.; Komai, T., Intestinal absorption of tetramethylammonium and its derivatives in rats. J. Pharmacobiodyn 1986, 9, (9), 747-54. 62. Anthony, C., The biochemistry of methylotrophs, http://www.chris-anthony.co.uk/pdf_files/Biochemistryofmeths.pdf. 1982. 63. Hu, T.-H.; Whang, L.-M.; Liu, P.-W. G.; Hung, Y.-C.; Chen, H.-W.; Lin, L.-B.; Chen, C.-F.; Chen, S.-K.; Hsu, S. F.; Shen, W.; Fu, R.; Hsu, R., Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant. Bioresource Technol. 2012, 113, (0), 303-310. 64. Hirano, K.; Okamura, J.; Taira, T.; Sano, K.; Toyoda, A.; Ikeda, M. In An efficient treatment technique for TMAH wastewater by catalytic oxidation. IEEE T. Semiconduct. M., 2000, 139-142 65. Kim, S.; Choi, W., Kinetics and mechanisms of photocatalytic degradation of (CH3)nNH4-n+ (0 ≤ n ≤ 4) in TiO2 suspension: The role of OH radicals. Environ. Sci. Technol. 2002, 36, (9), 2019-2025. 66. Lin, S. H.; Kiang, C. D., Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. J. Hazard. Mater. 2003, 97, (1–3), 159-171. 67. 王啟渝, 預臭氧結合生物處理TFT-LCD有機廢水之研究-以四甲基氫氧化銨(TMAH)為例. 國立臺灣大學環境工程學研究所碩士論文 2007. 68. 許國恩, 朱敬平, 鍾裕仁, 放流水生物毒性測試之回顧與評析. 中興工程季刊 2009, 104. 69. 黃淑君, 不織布薄膜反應槽好氧生物分解TFT-LCD 製成有機廢水程序功能及生態變化之研究. 國立成功大學環境工程學系碩士論文 2006. 70. Buikema Jr, A. L.; Niederlehner, B. R.; Cairns Jr, J., Biological monitoring part IV-Toxicity testing. Water Res. 1982, 16, (3), 239-262. 71. Bulich, A. A., A practical and reliable method for monitoring the toxicity of aquatic sample. Process Biochem. 1982, 45-47. 72. 行政院環保署, 生物急毒性檢測方法-鯉魚靜水式法. 2011. 73. Lingane, J. J., Volumetric Analysis. Volume III. Titration Methods: Oxidation-Reduction Reactions. J. Am. Chem. Soc. 1958, 80, (10), 2599-2600. 74. Liang, C.; Bruell, C. J.; Albert, M. F.; Cross, P. E.; Ryan, D. K., Evaluation of reverse osmosis and nanofiltration for in situ persulfate remediated groundwater. Desalination 2007, 208, (1-3), 238-259. 75. Gary, R. P., The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem. 1993, 41, (1-3), 91-103. 76. Robert, E. H.; Carol, L. C., Rate constants for hydrogen abstraction reactions of the sulfate radical, SO4-. alkanes and ethers. Int. J. Chem. Kinet. 1989, 21, (8), 611-619. 77. 洪采貝, 光活化過硫酸鹽與臭氧氧化水中甲基第三丁基醚之動力研究. 國立成功大學環境工程學系碩士論文 2011. 78. Carey, F. A.; Sundberg, R. J., Advanced organic chemistry: Part A: structure and mechanisms. Springer: 2007. 79. USEPA, Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, Washington DC: United States Environmental Protection Agency (USEPA), EPA/821/R-02/012. 2002. 80. Chen, P.-J.; Su, C.-H.; Tseng, C.-Y.; Tan, S.-W.; Cheng, C.-H., Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Mar. Pollut. Bull. 2011, 63, (5–12), 339-346. 81. Suomalainen, L. R.; Tiirola, M.; Valtonen, E. T., Treatment of columnaris disease of rainbow trout: low pH and salt as possible tools? Dis. Aquat. Organ. 2005, 65, (2), 115-120.
摘要: 
氫氧化四甲基銨(Tetramethylammonium hydroxide, TMAH)為一含氮有機溶劑,近年來高科技產業普遍使用之電路板顯影劑與強鹼洗滌液,具有高鹼性、化學結構穩定與強烈神經毒素等特性,不易於傳統廢水處理程序中去除,若未能妥善處理,此氨氮廢水將導致生態危害。本研究探討UV活化過硫酸鹽高級氧化程序處理TMAH之可行性,此氧化程序可快速產生氫氧根自由基與硫酸根自由基對目標污染物進行破壞,達到去除污染物之目的。研究過程探討反應系統中不同pH環境、過硫酸鹽濃度、UV強度與溫度之影響,並同時進行生物急毒性檢測,以綜合評估TMAH之移除與反應系統之毒性。

根據實驗結果顯示,建議之反應系統操作條件為pH = 2、過硫酸鹽濃度50 mM、UV = 15 W、溫度30oC,於此條件下TMAH降解速率符合假一階反應動力,其反應速率常數k = 0.0605 min-1,反應時間約70分鐘可將1.1 mM之TMAH完全去除,且反應130分鐘後之總有機碳去除率達85%。由生物急毒性分析結果顯示,強鹼特性為TMAH毒性之首要原因,但排除酸鹼影響後低濃度之TMAH仍具有相當程度之毒性危害,而UV活化過硫酸鹽毒性大小取決於過硫酸鹽是否可完全反應成硫酸根離子,若能完全降解成SO42-則可大幅降低急毒性;此外,反應系統造成水體酸化亦為影響毒性評估之重要因素。本研究結果證實利用UV活化過硫酸鹽可有效降解TMAH,且經由生物急毒性分析釐清TMAH與反應系統之毒性因素,研究成果可供作未來使用過硫酸鹽氧化處理高科技廢水一參考程序。

Tetramethylammonium hydroxide (TMAH) is widely used in the hightech industry as a developing agent of the circuit board or an alkali washing liquid. Due to its characteristics of alkaline pH, neuronal toxicity, and chemical stability, TMAH might not be effectively removed by conventional wastewater treatment processes; therefore it may pose threat to the ecological system if TMAH solution is not properly treated. In this study, the degradation of TMAH by UV activated persulfate was investigated, in which process hydroxyl or sulfate radicals can be generated for destroying target
contaminants. Influences of pH, persulfate concentration, UV strength, and temperature on the oxidation system were examined. Furthermore, acute toxicities of TMAH and species involved in the oxidation system were also analyzed.

Based on the experimental results, operating conditions in this oxidation system of pH = 2, UV = 15 W, persulfate dose = 50 mM, and 30oC were recommended. Under these operating conditions, complete degradation of 1.1 mM TMAH was achieved after 70 minutes of reaction by the UV/persulfate oxidation process with the pseudo-first-order rate constant for TMAH
degradation (kobs, TMAH) of 0.0605 min-1. Additionally, 85% of total organic carbon removal was achieved at the end of the reaction (130 minutes). The result of biological acute toxicity analysis showed that the toxicity of TMAH is mainly caused by alkaline pH, and if pH effect was excluded, low TMAH concentration still exhibited acute toxicity. Moreover, the acute toxicity of persulfate depends on the degree of persulfate decomposed and when persulfate is completely decomposed to sulfate ions, the acute toxicity would be
significantly reduced. Additionally, the solution pH variation during the course of reaction is also an important factor than influences toxicity. In conclusion, UV photolytic persulfate activation can effectively degrade TMAH in water and the results of toxicity analysis give information clarifying relationship between TMAH and oxidation system. The results of this study may serve as a reference for wastewater treatment in the high-tech industry
using persulfate oxidation processes.
URI: http://hdl.handle.net/11455/5795
其他識別: U0005-1906201313272300
Appears in Collections:環境工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.