Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/5796
標題: pH緩衝鹼活化過硫酸鹽氧化1,2-二氯乙烷之探討
Evaluation of buffered alkaline pH activated persulfate oxidation of 1,2-dichloroethane
作者: 許展銘
Hsu, Chan-Ming
關鍵字: 現地化學氧化法;in situ chemical oxidation;1,2-二氯乙烷;鹼活化過硫酸鹽;鹼性緩衝溶液;氯化有機溶劑;1,2-dichloroethane;alkaline activated persulfate;alkaline buffer solution;chlorinated solvents
出版社: 環境工程學系所
引用: Aelion, C.M., Davis, H.T., Flora, J.R.V., Kirtland, B.C., Amidon, M.B., 2009. Application of encapsulation (pH-sensitive polymer and phosphate buffer macrocapsules): A novel approach to remediation of acidic ground water. Environmental Pollution 157, 186-193. Alpaslan Kocamemi, B., Cecen, F., 2009. Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying biofilm reactor. International Biodeterioration and Biodegradation 63, 717-726. Anipsitakis, G.P., Dionysiou, D.D., 2004. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology 38, 3705-3712. Aronson, D., Howard, P., 2008. The Environmental Behavior of Ethylene Dibromide and 1,2-Dichloroethane in Surface Water, Soil, and Groundwater. American Petroleum Institute Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005. ATSDR, 2001. Toxicological profile for 1,2-dichloroethane. Agency for Toxic Substances and Disease Registry(ATSDR), Available from : http://www.atsdr.cdc.gov/. Barbash, J.E., Reinhard, M., 1989. Abiotic dehalogenation of 1,2-dichloroethane and 1,2-dibromoethane in aqueous solution containing hydrogen sulfide. Environmental Science & Technology 23, 1349-1358. Barcelona, M.J., Holm, T.R., 1991. Oxidation-reduction capacities of aquifer solids. Environmental Science & Technology 25, 1565-1572. Bates, R.G., Bower, V.E., 1956. Alkaline solutions for pH control. Analytical Chemistry 28, 1322-1324. Bejankiwar, R., Lalman, J.A., Seth, R., Biswas, N., 2005. Electrochemical degradation of 1,2-dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes. Water Research 39, 4715-4724. Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the fourth international conference on the remediation of chlorinated and recalcitrant compounds, Monterey, CA. Brandt, C., Fabian, I., van Eldik, R., 1994. Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorganic Chemistry 33, 687-701. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (‧OH/‧O-) in aqueous solution. Journal of Physical and Chemical Reference Data 17, 513-531. Buxton, G.V., Malone, T.N., Salmon, G.A., 1997. Reaction of SO4-‧ with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society, Faraday Transactions 93, 2893-2897. Carroll Jr, W.F., Berger, T.C., Borrelli, F.E., Garrity, P.J., Jacobs, R.A., Lewis, J.W., McCreedy, R.L., Tuhovak, D.R., Weston, A.F., 1998. Characterization of emissions of dioxins and furans from ethylene dichloride (EDC), vinyl chloride (VCM) and polyvinylchloride (PVC) manufacturing facilities in the united states. I. resin, treated wastewater, and ethylene dichloride. Chemosphere 37, 1957-1972. Chang, H.-L., Alvarez-Cohen, L., 1995. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnology and Bioengineering 45, 440-449. Chen, F., Freedman, D.L., Falta, R.W., Murdoch, L.C., 2012. Henry’s law constants of chlorinated solvents at elevated temperatures. Chemosphere 86, 156-165. Chen, F., Liu, X., Falta, R.W., Murdoch, L.C., 2010. Experimental demonstration of contaminant removal from fractured rock by boiling. Environmental Science & Technology 44, 6437-6442. Costanza, J., Otano, G., Callaghan, J., Pennell, K.D., 2010. PCE oxidation by sodium persulfate in the presence of solids. Environmental Science & Technology 44, 9445-9450. Davis, G.B., Patterson, B.M., Johnston, C.D., 2009. Aerobic bioremediation of 1,2 dichloroethane and vinyl chloride at field scale. Journal of Contaminant Hydrology 107, 91-100. Dogliotti, L., Hayon, E., 1967. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. The Journal of Physical Chemistry 71, 2511-2516. Falta, R.W., Bulsara, N., Henderson, J.K., Mayer, R.A., 2005. Leaded-gasoline additives still contaminate groundwater. Environmental Science & Technology 39, 378A-384A. Fang, S.-C., Lo, S.L., 2011. Persulfate oxidation activated by peroxide with and without iron for remediation of soil contaminated by heavy fuel oil. IEEE, 2362-2366. Flora, J.R.V., Baker, B., Wybenga, D., Zhu, H., Marjorie Aelion, C., 2008. Preparation of acidic and alkaline macrocapsules for pH control. Chemosphere 70, 1077-1084. Furman, O.S., Teel, A.L., Ahmad, M., Merker, M.C., Richard J. Watts, M.A., 2011. Effect of basicity on persulfate reactivity. Journal of Environmental Engineering 137, 241-247. Furman, O.S., Teel, A.L., Watts, R.J., 2010. Mechanism of base activation of persulfate. Environmental Science & Technology 44, 6423-6428. Gwinn, M.R., Johns, D.O., Bateson, T.F., Guyton, K.Z., 2011. A review of the genotoxicity of 1,2-dichloroethane (EDC). Mutation Research/Reviews in Mutation Research 727, 42-53. Hage, J.C., Hartmans, S., 1999. Monooxygenase-mediated 1,2-Dichloroethane degradation by pseudomonas sp. strain DCA1. Applied and Environmental Microbiology 65, 2466-2470. Haselow, J.S., Siegrist, R.L., Crimi, M., Jarosch, T., 2003. Estimating the total oxidant demand for in situ chemical oxidation design. Remediation Journal 13, 5-16. Hayon, E., Treinin, A., Wilf, J., 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society 94, 47-57. Henderson, J.K., Freedman, D.L., Falta, R.W., Kuder, T., Wilson, J.T., 2007. Anaerobic biodegradation of ethylene dibromide and 1,2-Dichloroethane in the presence of fuel hydrocarbons. Environmental Science & Technology 42, 864-870. Heron, G., Parker, K., Galligan, J., Holmes, T.C., 2009. Thermal treatment of eight CVOC source zones to near nondetect concentrations. Ground Water Monitoring & Remediation 29, 56-65. Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G., Sherwood Lollar, B., 2007. Isotope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane. Environmental Microbiology 9, 1651-1657. House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185-203. Huang, K.-C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49, 413-420. Huang, K.-C., Zhao, Z., Hoag, G.E., Dahmani, A., Block, P.A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551-560. Huie, R.E., Clifton, C.L., Neta, P., 1991. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 38, 477-481. Huling, S.G., Pivetz, B.E., 2006. In-Situ Chemical Oxidation: Engineering Issue. United States Environmental Protection Agency(USEPA) EPA/600/R-06/072. IARC, 1999. 1,2-dichloroethane. In: Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen peroxide(part two). Lyon, International Agency for research on cancer(IARC). (IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol.71), 501-529 ITRC, 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater : Second Edition. Interstate Technology and Regulatory Council(ITRC). Jeffers, P.M., Ward, L.M., Woytowitch, L.M., Wolfe, N.L., 1989. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environmental Science & Technology 23, 965-969. Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., 1995. Kinetics of glucose oxidation with persulfate ions, catalyzed by iron salts. Russian Journal of General Chemistry 65, 1092-1096. Kjaergaard, C., 2003. Colloid mobilization and transport in structured soils - the role of colloid dispersion, colloid stability and preferential flow. Ph.D. dissertation. Department of Environmental Engineering. Institute of Life Sciences. Aalborg University. Lai, K.C.K., Lo, I.M.C., Birkelund, V., Kjeldsen, P., 2006. Field monitoring of a permeable reactive barrier for removal of chlorinated organics. Journal of Environmental Engineering 132, 199-210. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213-1223. Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004b. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55, 1225-1233. Liang, C., Huang, C.-F., Mohanty, N., Kurakalva, R.M., 2008. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73, 1540-1543. Liang, C., Lai, M.-C., 2008. Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science 25, 1071-1078. Liang, C., Su, H.-W., 2009. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Industrial & Engineering Chemistry Research 48, 5558-5562. Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113. Liang, C., Wang, Z.-S., Mohanty, N., 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Science of The Total Environment 370, 271-277. Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination: An International Journal 12, 207-228. Lin, Y.-T., Liang, C., Chen, J.-H., 2011. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82, 1168-1172. Lipczynska-Kochany, E., Sprah, G., Harms, S., 1995. Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30, 9-20. Liu, C.S., Shih, K., Sun, C.X., Wang, F., 2012. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Science of The Total Environment 416, 507-512. Maruthamuthu, P., Neta, P., 1978. Phosphate radicals. spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry 82, 710-713. Minisci, F., Citterio, A., Giordano, C., 1983. Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry. Accounts of Chemical Research 16, 27-32. Mumford, K.G., Thomson, N.R., Allen-King, R.M., 2005. Bench-scale investigation of permanganate natural oxidant demand kinetics. Environmental Science & Technology 39, 2835-2840. Nobre, R.C.M., Nobre, M.M.M., 2004. Natural attenuation of chlorinated organics in a shallow sand aquifer. Journal of Hazardous Materials 110, 129-137. Oh, S.-Y., Kang, S.-G., Chiu, P.C., 2010. Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Science of The Total Environment 408, 3464-3468. Page, A.L., Miller, R.H., Keeney, D.R., Lean, E.O.M., 1982. Methods of Soil Analysis - Part 2 Chemical and Microbiological Properties, Second Edition, Contents 12: Soil pH and Lime Requirement. American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA. Pennington, D.E., Haim, A., 1968. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction. Journal of the American Chemical Society 90, 3700-3704. Perrin, D.D., Dempsey, B., 1974. Buffers for pH and Metal Ion Control. Chapman and Hall, New York, USA. Peyton, G.R., 1993. The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry 41, 91-103. Rittmann, B.E., McCarty, P.L., 2001. Environmental Biotechnology : Principles and Applications. Published by McGraw-Hill, New York, Americas. Root, D.K., Lay, E.M., Block, P.A., Cutler, W.G., 2005. Investigation of chlorinated methanes treatability using activated sodium persulfate. Proceedings of the first international conference on Environmental Science and Technology, New Orleans, Louisiana, USA. Sabljić, A., Gusten, H., Verhaar, H., Hermens, J., 1995. QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31, 4489-4514. Sawyer, C.N., McCarty, P.L., Parkin, G.F., 2003. Chemistry for Environmental Engineering and Science : Fifth Edition. Published by McGraw-Hill, New York, Americas. Schmelling, D., Poster, D., Chaychian, M., Neta, P., McLaughlin, W., Silverman, J., Al-Sheikhly, M., 1998. Applications of ionizing radiation to the remediation of materials contaminated with heavy metals and polychlorinated biphenyls. Radiation Physics and Chemistry 52, 371-377. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and Practices of in Situ Chemical Oxidation Using Permanganate. Battelle Press, Ohio, USA. Sinha, M.K., 1971. Organo-metallic phosphates I. interaction of phosphorus compounds with humic substances. Plant and soil 35, 471-484. Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R., 2004. Fundamentals of Analytical Chemistry : Eighth Edition. Brooks/Cole, a division of Thomson Learning, Inc., Published in USA. Slyke, D.D.V., 1922. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. The Journal of Biological Chemistry 52, 525-570. Snoeyink, V.L., jenkins, D., 1980. Water Chemistry. John Wiley & Sons, Inc., Published in Canada. Song, H., Carraway, E.R., 2005. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environmental Science & Technology 39, 6237-6245. Sposito, G., 1989. The Chemistry of Soils. Published by Oxford University Press, Inc., New York. Suthersan, S.S., 1997. Remediation Engineering : design concepts. CRC Press LLC, Arcadis, Newtown, Pennsylvania, USA. Tan, K.H., 1998. Principles of Soil Chemistry - Third Edition, Revised and Expanded. Marcel Dekker, Inc., New York. Thiruvenkatachari, R., Vigneswaran, S., Naidu, R., 2008. Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry 14, 145-156. USEPA, 1991. 1,2-Dichloroethane Carcinogenicity Assessment(CASRN 107-06-2). United States Environmental Protection Agency(USEPA). Available from : <http://www.epa.gov/iris/subst/0149.htm>. USEPA, 1998. Permeable Reactive Barrier Technologies for Contaminant Remediation. EPA/600/R-98/125 Office of Research and Development Washington DC 20460. USEPA, 2009. National Primary Drinking Water Regulations. EPA 816-F-09-004 United States Environmental Protection Agency(USEPA). Valsaraj, K.T., Kommalapati, R.R., Robertson, E.D., Constant, W.D., 1999. Partition constants and adsorption/desorption hysteresis for volatile organic compounds on soil from a Louisiana superfund site. Environmental Monitoring and Assessment 58, 227-243. Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., Nurmi, J.T., 2006. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and Products. Environmental Science & Technology 41, 1010-1015. Wei, Y.-T., Wu, S.-c., Yang, S.-W., Che, C.-H., Lien, H.-L., Huang, D.-H., 2011. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials. Woods, R., Kolthoff, I.M., Meehan, E.J., 1963. Arsenic(IV) as an intermediate in the induced oxidation of arsenic(III) by the iron(II)-persulfate reaction and the photoreduction of iron(III). I. absence of oxygen. Journal of the American Chemical Society 85, 2385-2390. 自由時報, 2010年3月21日. 台塑仁武廠 地下水毒物超標30萬倍. 行政院勞工委員會GHS, 2012. GHS化學品全球調合制度-危害物資訊查詢. 行政院勞工委員會GHS. Available from:<http://ghs.cla.gov.tw/CHT/intro/search.aspx?cssid=3%3e>. 行政院環境保護署, 1997. 飲用水水源水質標準. 行政院環境保護署, 2011a. 1,2-二氯乙烷物質安全資料表. 行政院環境保護署, 2011b. 土壤污染管制標準. 行政院環境保護署, 2011c. 地下水污染管制標準. 行政院環境保護署土污基管會, 2009. 98年度土壤及地下水污染整治年報. 土壤及地下水污染整治網. 行政院環境保護署土污基管會, 2010年7月7日. 台塑仁武廠污染事件Q&A. 熱門議題文摘. 新聞真相. 環保新聞專區. 行政院環境保護署土污基管會, 2012. 「土壤氣體抽除法」. 土壤及地下水污染整治網. 行政院環境保護署毒理資料庫, 1990. 1,2-二氯乙烷毒理資料. 行政院環境保護署. Available from : <http://flora2.epa.gov.tw/toxicweb/toxicuc4/database/7133.htm>. 行政院環境保護署環境檢驗所, 2009. 土壤酸鹼值 (pH值) 測定方法-電極法. NIEA S410.62C. 李宜玲, 2007. 鐵及環湖精複合鐵活化過硫酸鹽氧化三氯乙烯-管柱實驗. 碩士學位論文. 環境工程研究所. 國立中興大學, 台中市. 物質安全資料表, 2008. 氯化鉀、碳酸氫鈉及磷酸鹽類物質安全資料表. 于成股份有限公司(氯化鉀、鄰酸氫二鈉), 台灣默克股份有限公司(碳酸氫鈉), 景明化工股份有限公司(磷酸二氫鈉、磷酸三鈉). 高雄縣環境保護局, 2010. 高雄縣仁武鄉台灣塑膠工業股份有限公司仁武廠廠外地下水污染來源調查與釐清計畫執行報告. 梁振儒, 2007. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊 23, 13-20. 勞工安全衛生研究所, 2011. 化學毒物資料庫 (Toxnet). 勞工安全衛生研究所. Available from <http://toxnet.nlm.nih.gov/>. 雷鎔瑄, 2011. 過硫酸鹽活化程序對整治難分解性有機污染物之適用性篩選試驗. 碩士學位論文. 環境工程研究所. 國立中興大學, 台中市.
摘要: 
過硫酸鹽經鹼性活化可分解生成高反應性自由基包含強氧化性硫酸根及氫氧根自由基,以及還原性之超氧自由基,因此本研究嘗試探討過硫酸鹽結合鹼性pH緩衝溶液應用於整治1,2-二氯乙烷(1,2-DCA)之污染,鹼性pH緩衝系統除可提供鹼性活化條件外,亦可用以吸收由過硫酸鹽分解後產生之氫離子,避免於現地整治應用上造成地下水之酸化,藉此可維持長效性鹼活化過硫酸鹽之反應條件。

本研究目標首先利用不同試劑配製鹼性緩衝溶液(pH ~ 13),經由酸滴定試驗及鹼活化過硫酸鹽進行水相中1,2-DCA之降解試驗,進而篩選出較適合之鹼性緩衝溶液,由結果得知磷酸鹽所配製之溶液,相較於其它所採用之緩衝試劑,具有較佳緩衝強度並且對鹼活化過硫酸鹽之反應效能較佳。接著進一步探究不同緩衝強度磷酸鹽鹼性溶液(例如不同緩衝pH及離子強度)對氧化反應之影響,經由酸滴定試驗及比較不同反應條件下之1,2-DCA降解速率常數得知,較佳鹼性緩衝溶液pH值為8,離子強度為 1.0 M時具有較快速之1,2-DCA降解速率,且於反應過程中皆無偵測到副產物之生成。

接續以較佳鹼性緩衝溶液pH值為8,離子強度為1.0 M之反應條件,評估過硫酸鹽於土壤存在環境下對1,2-DCA之降解影響,泥水相系統中過硫酸鹽較佳劑量為0.1663 M(較佳鹼性緩衝溶液設定初始pH 8至反應最終4),於反應時間7天對於10 mg/L 1,2-DCA之去除率達64.2%,且其降解速率常數為5.1 × 10-3 hr-1。進一步依此反應條件於泥水相中氧化降解低(10 mg/L)及高(100 mg/L)濃度1,2-DCA,結果證實對於低及高濃度1,2-DCA之去除率於反應30天後分別可達99.2及94.5%,其降解速率常數分別為6.7 × 10-3及3.9 × 10-3 hr-1,且過硫酸鹽皆僅降解10%以內,pH值皆仍保持於7.5以上。此些研究成果證實pH緩衝鹼活化過硫酸鹽之反應程序可用以氧化處理1,2-二氯乙烷污染物。

Alkaline activated persulfate could generate the free radicals such as the oxidative sulfate and hydroxyl radicals, as well as the reductive superoxide radicals. Therefore, this study was to evaluate persulfate oxidation combining with alkaline pH buffer solution for the remediation of 1,2-dichloroethane (1,2-DCA) contamination. The alkaline buffer system can maintain the alkaline condition for persulfate activation and also buffer hydrogen ions released during persulfate decomposition to prevent the acidification of groundwater during in situ application.

This study initially evaluated different alkaline buffer reagents (pH ~ 13) and determind the suitable alkaline buffer solution based on the results of acid titration tests and degradation of 1,2-DCA in aqueous phase with alkaline activation persulfate. The results showed that the phosphate buffer exhibited the higher buffer intensity and the faster 1,2-DCA degradation rate. Furthermore, the effect of phosphate alkaline buffer solution with different buffer intensities (i.e. different buffered pH and ionic strength) on persulfate oxidation was investigated. Based on the acid titration tests and the degradation rate constant of 1,2-DCA, it could be seen that the rapid degradation of 1,2-DCA occurred under the conditions of buffer solution pH of 8, and ionic strength of 1.0 M, and no byproducts were detected.

The influence of soil on 1,2-DCA degradation was evaluated with fixed buffer pH of 8 and ionic strength of 0.1 M. In soil slurry systems, the optimal dose of persulfate (0.1663 M ( buffer pH set from initial 8 to final 4)) was conducted. 64.2% removal of 1,2-DCA (10 mg/L) was observed in 7 days of reaction, and the degradation rate constant was 5.1 � 10-3 hr-1. Additionally, the low and high concentration of 1,2-DCA (10 mg/L and 100 mg/L, respectively) were evaluated. The results indicated that the 1,2-DCA removal can reach 99.2% and 94.5% after 30 days with the degradation rate constant of 6.7 � 10-3 and 3.9 � 10-3 hr-1, respectively, and the persulfate consumption was less than 10%, and pH value still remained above 7.5. These experimental results confirmed that the alkaline buffer pH activated persulfate system provides a potential method for the treatment of contamination by 1,2-DCA.
URI: http://hdl.handle.net/11455/5796
其他識別: U0005-2607201216452600
Appears in Collections:環境工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.